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ABSTRACT 
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This study investigated the effects of slight changes in the alignment of the artificial limb 

of trans-tibial amputees on the walking pattern on the level of forces and moments, 

particularly when physical exertion levels increase. Two alignment conditions were 

assessed in ten trans-tibial amputees while walking with low and with “strong” levels of 

exertion. Two separate data collection methods were utilized simultaneously: a 

conventional motion analysis, and continuous recordings from prosthesis-integrated 

force sensors. While the former was used to compare bilateral leg symmetry across 

conditions, the latter allowed analyzing unilateral step variability within subjects. This 

paper presents both analyses in separate chapters. A third chapter addresses the 

question of concurrent validity of the utilized integrated-sensor-based gait data 

collection method. 
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Findings indicate that increased physical exertion and prosthesis ankle plantar-flexion 

angle was related to decreases in step length symmetry, maximal knee flexion angle, 

knee moment, and dorsi-flexion moment, but had no significant effect on an overall gait 

symmetry index. It was also shown, that effects were different among participants, with 

only three of them showing a significant change in parameters measured by the 

integrated sensor system. Integrated sensor measurements namely of axial force and 

joint moments were found to be closely correlated to conventional measurements, 

while pertaining to slightly different biomechanical quantities. 

The detected effects of alignment perturbations and physical exertion were small in 

magnitude and inconsistent between participants of our sample population.  The 

concept of a range of acceptable prosthesis alignments, within which no optimization is 

feasible, is supported. However, amputee gait pattern and responses to alignment 

perturbations seem to change with the level of exertion. This suggests a consideration 

of real life conditions for the individual optimization of prosthetic alignment. Provided 

the systematic limitations of the integrated sensor measurements are carefully 

considered, it appears possible to use this method for the assessment of individual 

effects of alignment changes.  
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1 Introduction 

1.1 Determining the alignment optimum of a prosthesis 

The optimal alignment of an artificial limb – particularly, a lower limb – is an important aspect of 

the overall fitting quality. Like the prosthetic socket and the selection and adjustment of the 

mechanical components of the prosthesis, the alignment must be optimized for each patient 

individually. While it is a trivial fact that generally better alignment correlates with better 

prosthesis performance (Pinzur et al., 1995; Sanders, Reed, & Marks, 1993), it is debated in the 

scientific literature whether or not there is a specific optimal alignment for a given patient, or 

actually rather a range of acceptable alignments without distinction in quality (Blumentritt, 

1997; Chow, Holmes, Lee, & Sin, 2006; Sin, Chow, & Cheng, 2001; Zahedi, 1986). A reason for 

some of the differences in the conclusions of different authors may be the fact that there is no 

universally applied quantitative method for the respective assessment of alignment quality: 

Typically, studies that have evaluated the influence of various interventions, such as change of 

prosthetic components, or change of prosthetic alignment, on prosthetic performance have 

selected either one or used combinations of different assessment criterions, as there are 

walking speed, metabolic efficiency, and inter-leg symmetry (Boonstra, Fidler, & Eisma, 1993; 

Nolan et al., 2003; Silverman et al., 2008).  

1.2 Significance of alignment optimization 

Irrespective of the actual nature of the alignment optimum, be it a discrete alignment setting 

(figure 1) or an acceptable range of settings, an approximation of this optimum (figure 2) is 

desirable to reduce the negative effects of misaligned prostheses (Sin et al., 2001), such as 

“abrasion and irritation at the interface of the socket and the stump” (Chow et al., 2006) or 

deficits in terms of “energy use, gait appearance, and walking comfort of the amputee with the 

prosthesis”(Jia, Wang, Zhang, & Lia, 2008). Many amputees are capable of compensating for 
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Figure 1: Illustration of alignment effects on prosthesis performance levels. Many assessment methods 

allow the identification of an acceptable level, but fail to answer the question for the (possible) 

optimum setting. 

prosthesis alignment deficits (Beyaert, Grumillier, Martinet, Paysant, & André, 2008; Fridman, 

Ona, & Isakov, 2003; Grumilliera, Martineta, Paysanta, Andréa, & Beyaert, 2008; Jia et al., 2008; 

Van Velzen, Houdijk, Polomski, & Van Bennekom, 2005; Yang, Solomonidis, Spence, & Paul, 

1991; Zahedi, 1986),  which may mask the misalignment issue and lead to long-term side effects. 

Depending on the prosthetic components and the individual physical condition, those required 

compensation efforts may be more or less demanding (Jia et al., 2008; Schmalz, Blumentritt, & 

Jarasch, 2002). Yet any compensatory effort will always be a disadvantage from the point of 

energy efficiency, as the required muscle work and control capabilities will come at the expense 

of the available resources for locomotion. In consequence, the obtainable walking speed or 
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walking distance may be reduced. This is a universally found result. For example, outside of the 

amputee population, it has also been observed in elderly populations (Ko, Ling, Winters, & 

Ferrucci, 2009), in patients coping with and recovering from motor disorders (Theo  Mulder, 

Zijlstra, & Geurts, 2002), and in subjects using specific footwear (Perry, Radtke, McIlroy, Fernie, 

& Maki, 2007). 

 

Figure 1:Schematic of the iterative alignment process in the clinic. Center piece is the assessment of 

gait, that depends on visual observation and patient's feedback. *Use of the LASAR posture device 

(Otto Bock, Duderstadt, GER) has been proposed by Blumentritt (1997) 

 

1.3 Open Research Questions on Prosthetic Alignment  

While there are many studies concerned with the optimal assessment of gait symmetry in 

amputees, some factors that may influence prosthesis performance have not been extensively 

discussed. Given that amputees regularly compensate alignment perturbations, it seems 

possible that observations obtained under experimental conditions inside a laboratory 
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environment are not indicative of the prosthesis performance in situations that the patient 

encounters in everyday life (Neumann, 2009). Various parameters may be different, such as 

surface evenness, lighting, patient’s fatigue, motivation, or distraction. Any of those factors may 

lead to a reduced level or success of compensatory efforts, which in turn would negatively affect 

the gait symmetry – particularly in the case of a misaligned prosthesis (Sin et al., 2001). If the 

notion is accepted that there is an optimum alignment (range) of the prosthesis (Chow et al., 

2006), it can be concluded that even subtle alignment deviations from this optimum will have an 

adverse effect.   

1.3.1 Typical alignment perturbations investigated in research studies 

Alignment perturbations that have been frequently investigated in research studies. Often they 

included the realignment of the prosthetic ankle joint in the sagittal plane (e.g. foot plantar-

flexion or dorsi-flexion). Beyond the popularity of that particular alignment in research, it also 

has significance in clinical practice. The easiest (although often improper1) way to increase the 

stance stability and perceived safety of a trans-tibial prosthesis is in many cases to increase the 

foot plantar flexion. That results in a higher knee extending moment, which prevents the knee 

from buckling during the early stance phase. As for research purposes, some authors have 

aimed the respective ankle angle alignment perturbations to most accurately match a 

predetermined ground reaction force (GRF) line (Blumentritt, 1997; Blumentritt, Schmalz, 

Jarasch, & Schneider, 1999), or an idealized ‘roll-over’ shape (A. H. Hansen, Meier, Sam, 

Childress, & Edwards, 2003). Others, who settled on a defined ankle angle change, choose 

misalignment ranges between 5 degrees (Rossi, Doyle, & Skinner, 1995), 10 degrees (Schmalz et 

al., 2002) and 15 degrees (Van Velzen et al., 2005); again others used a 5mm wedge under the 
                                                           
1
 The biomechanically more appropriate way to achieve static knee stability would be a parallel shift of 

the foot anteriorly with respect to the socket, which inhibits the roll-over motion less severely. However, 

this procedure is more complex and requires more work. 
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forefoot and heel respectively (Seelen, Anemaat, Janssen, & Deckers, 2003), or different shoes 

with heel height differences of 20 mm (Xiaobing, Xiaohong, Peng, & Lidan, 2005). The most 

subtle alignment changes with increments of 1 degree were reported by (Sin et al., 2001) and 

(Chow et al., 2006). In the last mentioned studies, an acceptable range of alignments was 

determined based on patient’s feedback and the visual gait assessment by experienced 

prosthetists, leading to individually different ranges of acceptable alignments that were 

subsequently evaluated by instrumented gait analysis methods. 

1.3.2 Measurement variables that have been evaluated in research studies 

 The published studies on amputee gait can be coarsely grouped according to the methods 

employed: In one group, authors considered kinematic parameters, such as joint angle 

symmetries during walking (Dingwell, Davis, & Frazier, 1996; Isakov, Burger, Krajnik, Gregoric, & 

Marincek, 1996). This most resembles the prosthetic gait assessment in clinical practice. The 

other group of studies included (solely or in addition to the kinematics parameters) kinetics 

parameters, for instance relative limb loading during ambulation (Bateni & Olney, 2002; Hong & 

Mun, 2005), and, alternatively, muscle activation patterns (Fey, Silverman, & Neptune, 2010). As 

this kind of measurements requires additional equipment, such as force plates or 

electromyography sensors, data collection for those studies is often constrained to the 

laboratory environment, a limitation that has been criticized to reduce the practical significance 

of the findings (Neumann, 2009). The reported walking interventions include different 

prosthetic components, different shoes, and different walking surfaces among others. It was 

found that the “acceptable alignment range for non-level walking [is] smaller than and fell 

within that for level walking” (Sin et al., 2001), suggesting that respective walking trials on 

uneven surfaces be included for alignment optimizations. 
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1.3.3 Contribution of the present study 

There is a declared gap in knowledge on how prosthesis alignment perturbations affect amputee 

gait performance outside of the laboratory. Research is necessary to help understand the nature 

of the individual alignment optimum, and how to attain this optimum. The literature indicates 

that for a given patient, there is often a range of acceptable prosthesis alignments, within which 

no further optimization is possible. However, the range of acceptable alignments declines once 

the patient navigates uneven walking surfaces, which suggests that amputees compensate for 

slight alignment changes in the gait laboratory. An optimally aligned prosthesis would reduce 

the need for compensatory efforts to a minimum and thus increase the biodynamic efficiency of 

amputee gait.  

Purpose of this study was to compare amputee-walking dynamics under different real life 

conditions, by including walking with a certain degree of physical exertion to the respective 

interventions. By investigating whether an interaction effect of subtle alignment perturbations 

and increased exertion levels could be detected, this study addressed the need to translate 

laboratory findings into practically relevant results. Based on this research, it may become 

possible to better define the individual range of acceptable alignments, and thereby develop a 

way to economically and efficiently improve the quality of lower limb prostheses. Assessing the 

concurrent validity of the mobile force sensor provided the prerequisite for this study as well as 

directions for future works. 

1.4 Specific Aims and Hypotheses  

Aim 1a: To investigate the effect of subtle alignment changes, physical exertion and their 

interaction on the gait symmetry in trans-tibial amputees. 
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Working hypothesis: Subtle changes of the prosthesis ankle alignment will have a significant 

effect on an overall index of gait kinematics when the amputee has reached a certain level of 

physical exertion. 

Aim 1b: To investigate differences between kinematics and kinetics indices in reflecting the 

effects of alignment changes, exertion, and interaction. Rationale is to determine whether 

consideration of one quantity of variables is sufficient in clinical practice. 

Working hypothesis: Subtle alignment changes will not have an immediate effect on gait 

kinematics, but on gait kinetics, specifically on knee moment and ankle moment. This would 

suggest monitoring kinetics variables during prosthesis fitting sessions. 

Aim 2: To evaluate the concurrent validity of kinetics measurements based on prosthesis 

integrated sensors. 

Working hypothesis: Measurement accuracy for ground reaction forces, ankle moments, 

knee moments, step duration, and step frequency is comparable to conventional gait analysis 

methods, as determined by correlation analysis. 

Aim 3a: To investigate the effects of subtle alignment change and physical exertion on 

unilateral step kinetics within subjects. 

Working hypothesis: Step variability between conditions is significantly higher than step 

variability within conditions. 

Aim 3b: To investigate the linearity of effects with increasing exertion. 

Working hypothesis: Effects will increase linearly when the amputee’s level of physical 

exertion increases. 
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Aim 3c: To investigate the effect of subtle alignment changes and physical exertion on step-

by-step variability. 

Working hypothesis: Step-by-step variability will increase with exertion and misalignment. 

1.5 A priori Limitations and Assumptions 

With a sample population of active trans-tibial amputees, findings of this study may not be 

entirely transferable to subjects with other amputation levels or conditions. 

1) There was no deliberate choice of prosthesis components or socket technology; instead 

the regular prostheses of participants were used. Conclusions pertaining to prosthesis 

components or technologies that were not represented may be limited. 

2) It was assumed that the regular prostheses of study participants were well-fitting and 

optimally aligned. 

3) It was assumed that participants gave truthful information in questionnaires and when 

reporting their perceived exertion levels. 

4) It was assumed that the temporary modification of the prostheses by installing the 

integrated sensor did not alter the original alignment or the function of the prosthesis 

1.6 Significance 

Amputations of the lower extremity are comparably widespread. Trans-tibial amputation alone 

has an annual incidence rate of roughly 13 in 100,000 Americans (Dillingham, Pezzin, & 

MacKenzie, 2002). The main causes for such amputations are vascular conditions as are 

common in diabetes. With the expected higher prevalence rate of diabetes in the future, it is 

projected that the number of persons living with an amputation will double by the year 2050 

(Ziegler-Graham, MacKenzie, Ephraim, Travison, & Brookmeyer, 2008). Artificial limbs that 
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replace the lost structure below the knee are necessary to enable standing and ambulation 

without crutches, and to facilitate the prevention of secondary ailments. Since socket fit and 

static alignment of prostheses are customized to the individual user, standardized quality 

measures are difficult to define, and there is a high variability within the end products of 

prosthetist’s efforts (Geil, 2002; Zahedi, 1986).  

1.6.1 Scientific significance 

The effect of subtle alignment changes on amputee gait in non-laboratory environments has not 

yet been extensively investigated. Physical exertion is a relevant factor to be analyzed in the 

context of gait pattern responses to alignment changes. Many previous findings, such as the 

“range of acceptable alignments” were based on study protocols where exertion was not an 

intervention variable. This work expands on the body of knowledge by including gait data from 

walking-with-“strong”-exertion trials, as well as by investigating the usefulness of mobile data 

collection methods for the analysis of amputee gait. 

1.6.2 Clinical significance 

The utilization of mobile gait analysis equipment (Intelligent Prosthetic Endoskeletal Component 

System “iPecs” Lab, College Park Industries, Fraser, MI) allowed a comparison of different 

environments in terms of inter-leg gait symmetry and step-to-step variability under different 

alignment conditions and exertion levels. The continuous and unobtrusive data collection 

method does not require any conscious collaboration from the subject, and allows thus to 

compare the walking kinetics of clinical test situations with those of situations where the subject 

is unaware of the gait monitoring. Results of this study may help optimize prosthetic fitting and 

alignment procedures in clinical practice when the provided evidence on the correlation of 

laboratory and real-life conditions is used to amend protocols and standards. The inclusion of 

extended walking sessions, as well as the use of mobile gait monitoring equipment, is among the 
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conclusions supported by the findings. As such, the present study is a step towards future 

developments that will allow supplementing the current praxis of optimizing prosthesis 

alignments by respective assessment methods (figure 3), and eventually lead to a more effective 

and efficient alignment optimization process. 

 
Figure 2: Currently, most of the alignment procedures in clinical prosthetics are based on visual gait 

assessment in the gait lab, which only covers a small part of the overall picture (upper left sector in the 

diagram). Extension of the test environment and inclusion of mobile sensors allows for a more 

comprehensive assessment of amputee gait as more contributing variables and boundary conditions 

can be considered. 
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1.6.3 Content presentation 

In the following, the results of this study are presented in three chapters, anticipating their 

subsequent modification into a format for journal manuscript submission. 

Chapter 2 is concerned with the effects of exertion and subtle alignment changes on gait, 

regarding main effects and interaction effect. Data was collected by conventional gait analysis 

(CGA). Dependent variables for this analysis are gait symmetry indices: one overall index, and 

two sub-indices for kinematics and kinetics parameters respectively. Also tested was the effect 

on unilateral gait variables. As such, this manuscript addresses aim 1. 

Chapter 3 investigates the question of concurrent validity of integrated sensor 

measurements of amputee gait biomechanics. To that end, a correlation analysis was conducted 

of variables that can be measured simultaneously by CGA and by the iPecs integrated sensors. 

Those variables are the ankle moment and the ground reaction force on the prosthetic leg side. 

Aim 2 is being addressed. 

In chapter 4, the initial analysis of exertion and misalignment effects is repeated based on 

variables from the integrated sensor that have been shown to be valid in chapter 3. In contrast 

to the analysis in the first chapter, the within-subject variability is assessed from multiple step 

samples, and is included in the computation of F-values. Repeated measurements over the 

course of the data collection session allow addressing aim 3. 

All analyses are based on the same data set that has been collected by means of the 

previously described methods. A sample of 10 active trans-tibial amputees was recruited and 

participated in the data collection in the summer and fall of 2011. Anthropometric data are 

listed in table 1. 
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Table 1: Anthropometric information on study participants. All subjects were fitted with variations of 

patellar-tendon-bearing (PTB) socket designs, with elastic roll-on liners, and energy-storing-and-

returning (ESAR) feet. *The Amputee Activity Score, proposed by Day (1981) is computed based on a 

questionnaire. Typical scores are in the Range of -70 to +40, although the scale is technically open-

ended. 
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1 46 64 168 Right 14 0.5 25 1.45 75 111 

2 29 81 179 Right 17 5 27 1.28 65 139 

3 59 118 188 Left 22.5 2 7 1.13 71 102 

4 61 84 170 bilateral 16.5 (both) 1 15 1.06 78 102 

5 32 81 173 bilateral 15 (l), 16 (r) 4 21 1.13 100 140 

6 55 82 187 Right 20 10 29 1.43 60 130 

7 59 82 190 Left 18 5 17 1.42 75 134 

8 60 91 173 Left 15 8 7 1.27 85 138 

9 38 84 173 Left 23 2 -1 1.35 84 162 

10 65 118 189 Right 23 3 19 1.52 88 141 
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2 Influence of physical exertion on the effect of subtle alignment 

changes in trans-tibial prosthesis walking 

2.1 Introduction 

The optimal static alignment of a leg prosthesis, that is the spatial orientation of the functional 

components of the prosthesis with respect to each other, is generally a compromise between 

dynamic efficiency and static stability, and is informed by a multitude of individually different 

factors that need to be considered during the alignment optimization process. As adjustment 

and alignment of an artificial leg remain constant, once set by the prosthetists, no adaptation to 

changes in walking surface, footwear, gait speed or other environmental factors is possible2.  

It has been suggested before, that there is a range of acceptable alignments in trans-tibial 

prosthetics within which no further optimization is possible (Blumentritt, 1997; Chow et al., 

2006; Sin et al., 2001; Zahedi, 1986). This notion implies that continued alignment efforts are 

futile after a level of acceptability has been reached. However, it was noted that the range of 

acceptable alignments is smaller when walking on uneven ground (Sin et al., 2001), as well as 

that laboratory findings may not be sufficiently translatable into real-life conditions (Neumann, 

2009). Observations in the gait laboratory may be biased by the idealized conditions, and by the 

selection of variables for analysis. An assessment that only considers kinematics but no kinetics 

– as common practice in prosthetics practice - may miss important information. 

Various outcome measures have been used in the research literature, including walking 

speed (Boonstra et al., 1993; Fey et al., 2010; Isakov et al., 1996; Nolan et al., 2003; Silverman et 

al., 2008), balance and fall susceptibility (Nadollek, Brauer, & Isles, 2002; Perry et al., 2007; 

                                                           
2 That is true for the current state of prosthetic technology, based on passive components. Recent 

developments indicate that future generations of prosthetic feet will be capable of active motion, thus 
approximating able bodied biomechanics.  
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Summers, Morrison, & Cochrane, 1988; Vanicek, Strike, McNaughton, & Polman, 2009; Vickers, 

Palk, McIntosh, & Beatty, 2008), and user’s content level (Legro et al., 1999; Miller & McCay, 

2006; Pezzin, Dillingham, MacKenzie, Ephraim, & Rossbach, 2004). Gait symmetry has been 

widely used as an assessment variable (Cheung, Wall, & Zelin, 1983; Chow et al., 2006; Dingwell 

et al., 1996; Isakov et al., 1996; Nolan et al., 2003; Tura, Raggi, Rocchi, Cutti, & Chiari, 2010), 

presumably because it represents one of the major objectives in prosthetic intervention, namely 

the restoration of the unimpaired natural function and appearance. It is also comparably quickly 

assessed and therefore an important criterion for prosthetists and amputees alike. 

Considering the reported finding of a “range of acceptable alignments”, it could be reasoned 

that physically active lower limb amputees are capable of compensating unfavorable subtle 

alignment changes of their prostheses (Beyaert et al., 2008; Grumilliera et al., 2008; Jia et al., 

2008; Sadeghi, Allard, & Duhaime, 2001; Silverman et al., 2008), and that therefore the gait 

pattern does not visibly change as the consequence of such an alignment change. With 

increasing physical exertion, those compensatory efforts should become less effective, and 

therefore the effect of subtle alignment changes would become measurable in amputee gait 

after a certain degree of exertion is reached. 

The purpose of this research was to determine whether the assessment of kinematic gait 

symmetry under laboratory conditions is sufficient to facilitate optimal prosthesis alignment. 

This study investigated the hypothesis that subtle prosthesis alignment changes, namely a by 

2 degrees increased ankle plantar-flexion, have a different effect on trans-tibial amputee gait 

symmetry when the amputee is walking with different levels of physical exertion, those levels 

being 0 and 5 on the 11-point RPE scale (Borg, 1998). It was also investigated whether any 

changes in bilateral symmetry are consistent between kinematic and kinetic parameters. 
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2.2 Methods 

A conventional gait analysis (CGA) was conducted with all ten subjects (demographic and 

anthropometric data are listed in table 1 in the previous chapter), wearing their respective 

original prostheses, and walking at a self-selected speed through the capture volume of the 

motion analysis laboratory (10 camera system (Cortex ®, Motion Analysis Corporation, Santa 

Rosa, CA, Sampling frequency 100 Hz), with 3 force plates (AMTI, Watertown, MA), Sampling 

frequency 1000 Hz). A modified Cleveland Clinic marker set was used, comprising of the 

customary leg and head markers (figure 4), but limiting the number of upper extremity and 

trunk markers to the three pelvis defining markers over the left and right anterior superior iliac 

spines  (ASIS), and the Sacrum. Wireless electromyography (EMG) electrodes (Delsys, Inc., 

Boston, MA) were applied over the rectus femoris and over the hamstring muscles of both legs. 

EMG data collection rate was 2000 Hz. 

 

Figure 3: Complete Cleveland Clinic marker set, from KinTools RT for Cortex User's Manual (Motion 

analysis 2010) 



www.manaraa.com

16 
 

 

Subjects were asked to walk back and forth on a specified path that led over the three force 

platforms installed flush with the ground. Initially, the force platforms were not pointed out to 

the subjects, in order to not compromise the walking pattern by attempts of aiming their steps 

at hitting the plates right. However, after subjects repeatedly failed to produce clean steps on 

the force plates, either by making only partial foot contact or multiple contacts on the same 

plate, they were oriented to the nature of the exercise, and asked to possibly hit the force plates 

in stride while maintaining a most natural walking pattern. This modification of standard 

practice has been shown to have acceptably small effects on the data (Grabiner, Feuerbach, 

Lundin, & Davis, 1995; Wearing, Urry, & Smeathers, 2000), and was motivated by the 

consideration of the fatiguing effect of multiple trials3. As fatigue, in the sense of exertion, was 

one of the independent variables of the study design, it was an objective to control it in the 

interest of having two clearly distinguishable exertion levels for comparison purposes. To 

minimize recovery effects and in light of the low rate of usable trials that could be recorded, 

generally only one trial per subject and condition was included in the post processing. 

After the first set of trials had been recorded, the prosthetic ankle alignment was altered by 

increasing the foot plantar-flexion by 2 degrees. The magnitude of this deliberately subtle 

alignment change was determined based on previous studies that included perturbations 

between 1 and 15 degrees (Chow et al., 2006; Rossi et al., 1995; Schmalz et al., 2002; Seelen et 

al., 2003; Sin et al., 2001; Van Velzen et al., 2005; Xiaobing et al., 2005). Alignment changes were 

done without doffing the prosthesis, by replicating a respective adjustment that had been 

tested during the prosthesis preparation phase. Prior to the testing, the doffed prosthesis had 

                                                           
3
 At the level of low exertion, the physical demands of multiple repetitions would lead to an undesirable 

increase in exertion. Conversely, at the level of strong exertion, the time needed for multiple repetitions 

would allow for an undesirable recovery from the increased exertion level. 
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been placed in an alignment device, where the original position of socket and foot with respect 

to each other was documented. While in this alignment device (figure 5), the foot position was 

temporarily altered in the sense of increased plantar-flexion of two degrees, measured by a 

simple goniometer. The angle correlates with the position of the set screws in the pylon 

adapters, so that – once the number of screw twists for the desired alignment perturbation was 

determined – this perturbation could be replicated without the use of a goniometer.  

 
Figure 4: Preparation of prosthesis prior to data collection. The integrated sensor under the socket was 

used for additional data collection that is not reported in this chapter. Plumb lines on the socket allow 

maintenance and reconstitution of the ori 

Following this subtle alignment change, the subject repeated the walking trials, captured by 

the motion analysis system. Next, the alignment was corrected to the original setting again, and 

the subject was asked to continue walking until the rated perceived exertion (RPE) would reach 

a “strong” level, as described by a level 5 of Borg’s “Category Ratio “10-point CR10 scale (Borg, 

1998). Subjects were also wearing a heart rate monitor, which delivered the pulse rate as a 

backup measure of acute exertion, although the decision on when to continue with the data 

collection, that is when the desired exertion level was reached, remained solely with the 

subject. 
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Once the RPE level of 5 was reported – usually following a few repetitions of stair climbing – 

another set of walking trials in the gait laboratory was conducted. In the light of individual 

differences in recovery rates from exertion, it was attempted to conduct these data collection 

sessions in a swift manner with a minimum of repetitions. Again, trials were recorded with the 

original setting, as well as with the two degrees increased ankle plantar-flexion alignment. 

In total, that resulted in motion analysis data of four different conditions:  

(1) Normal alignment & low exertion (PRE/NORM),  

(2) Altered alignment & low exertion (PRE/PF),  

(3) Normal alignment & “strong” exertion (POST/NORM), and eventually 

(4) Altered alignment & “strong” exertion (POST/PF). 

Two of the participants had bilateral trans-tibial amputations. For those subjects (number 4 

and 5), the data collection protocol was amended in that the alignment perturbation was 

performed for each leg separately, and gait trials were recorded for a total of eight conditions 

instead of four. (Added trials were “increased plantar-flexion in the second leg”, and “increased 

plantar-flexion in both legs simultaneously” in each exertion level.) 

A useable trial was selected for every condition and every subject for post processing. 

Marker position data was processed by filling gaps (Cortex ®, Motion Analysis Corporation, Santa 

Rosa, CA) and variables of interest were parameterized (OrthoTrack ®, Motion Analysis 

Corporation, Santa Rosa, CA). They included for both legs: step length4, stance phase duration, 

knee flexion angle, ankle flexion angle, knee flexion moment, ankle flexion moment, ankle 

abduction moment, ankle rotation moment, pelvis tilt, pelvis obliquity, quadriceps activation 

                                                           
4
 Step lengths were measured between heel strike position of the contralateral leg, and heel strike 

position of the interesting leg along the line of progression. Several steps were averaged when possible in 

the respective captured trial. 
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and hamstring activation. Maxima and the time of maxima were found for the following 

variables: knee flexion angle, ankle flexion angle, knee flexion moment, ankle flexion moment, 

ankle abduction moment, ankle rotation moment, pelvis tilt, pelvis obliquity, quadriceps 

activation and hamstring activation. Figure 6 shows the definition of a subset of the data. 

 
Figure 5: Illustration of landmark data points used for analysis of gait curves. Magnitude and timing of 

the marked peaks were evaluated 
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Based on those parameters, it was now investigated whether the subtle alignment change 

and the raised exertion level are correlated with any significant differences in bilateral 

asymmetry. In an effort to narrow the number of dependent variables, symmetry indices 

(Herzog, Nigg, Read, & Olsson, 1989) were devised following the study objective. In that sense, 

for each parameter the absolute bilateral difference was divided by the mean of both 

parameters in order to achieve a standardized positive index of symmetry. More correctly, this 

is an index of asymmetry as a value of 0 signifies perfect symmetry (Chow et al., 2006). The 

composition of the overall index, as well as the sub-indices for kinetics and kinematics 

parameters is depicted in table 2. 

Table 2: Variables combined into the different asymmetry indices 
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Recording of the EMG signals was flawed by several factors, most notably the incompatibility 

of the rather voluminous wireless electrodes and the fact that subjects were using elastic liner 

technology for the suspension of their prostheses. Those liners cover large portions of the thigh 
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and often disallowed the placement of EMG electrodes in the desirable locations over the 

muscle bellies. Although EMG data were collected for most of the subjects, they were not 

included in analysis as the low signal quality was deemed to considerably affect the level of 

confidence in possible conclusions. 

Prior to statistical analyses of variances, the sample data was tested for the assumption of 

normality. In cases where the normality assumption could not be upheld,  Friedman tests, and 

as appropriately respective non-parametric post-hoc tests were conduct, instead of the else 

applied Repeated-Measures Analysis of Variance (RMANOVA). Aside from the index-variables, 

tests were also conducted for variables describing the bilateral asymmetry based on isolated 

measures, to investigate possible trends in how those respond to the interventions.  

Additionally to the bilateral symmetry, it was also investigated what leg-wise (prosthetic vs. 

sound leg) effect the interventions had on gait parameters. To that end, variables were 

compared across conditions within legs. Sample sizes were 8 for the sound legs, and 12 for the 

prosthetic legs, due to the fact that two of the subjects were bilateral amputees. 

In a variation of the statistic calculation ran for the bilateral symmetry comparison above, 

two additional variables were selected (maximal pelvis obliquity, and maximal pelvis tilt), that 

could not be considered in the sense of bilateral symmetry. As before, the parameters maximal 

knee flexion angle, and time to maximum were included as well. All statistical evaluations were 

completed using the software IBM PASW (previously SPSS), version 19. 
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2.3 Results 

The results show no indication that physical exertion has an influence on amputee gait 

symmetry measured by an overall symmetry index, or that there is a significant interaction 

effect of exertion and subtle alignment perturbation. It could not be shown that there are 

significant differences when evaluating gait symmetry based on only kinematics parameters and 

based on only kinetics parameters. The combined gait asymmetry indices (overall, kinematics, 

kinetics) met the normality assumption and where therefore analyzed by RMANOVA. For most 

of the isolated asymmetry variables, the normality assumption was found to be violated, and 

statistical tests were subsequently conducted using non-parametric methods, such as the 

Friedman test for repeated measures analysis, and the Wilcoxon Signed Ranks test for post-hoc 

comparisons of conditions. No adjustments were made to account for multiple comparisons. 

Univariate comparisons suggest that asymmetry in the parameter “step length” was different 

across conditions (2 =7.8, p=0.05). Post hoc tests showed that a statistically significant 

difference existed between conditions PRE/NORM and PRE/PF (z= 1.960, p=0.050), with 

asymmetry being higher in the PRE/NORM condition. A statistically significant difference existed 

also between conditions PRE/PF and POST/PF (z= 2.380, p=0.017), with asymmetry being higher 

in the POST/PF condition (figure 7). This translates into the finding that asymmetry in step 

length improved initially after increasing the foot plantar-flexion, but decreased significantly 

when subjects had reached a higher level of exertion and were asked to walk with the same 

alignment of increased plantar-flexion. 

Other differences in bilateral symmetry measured in isolated variables were not found to be 

significant at the 0.05 threshold. 
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Figure 6: Step length asymmetry means and standard deviations over the four tested walking 

conditions. Differences between PRE/NORM and PRE/PF, as well as between PRE/PF and POST/PF are 

significant at the .05 level. 

In comparing gait variables within the same leg across conditions, it was found that “maximal 

knee flexion” (2 =8.2, p=0.042), “maximal knee moment” (2 =9.0, p=0.029), and “maximal 

dorsiflexion moment” (2 =8.5, p=0.037) were significantly different. 

Post hoc tests were conducted to determine the nature of those differences. The “maximal 

knee flexion” was significantly higher in condition POST/PF compared to PRE/PF (z=2.275, 

p=0.023). The “maximal knee moment” was higher in condition POST/NORM compared to 

PRE/NORM (z=2.511, p=0.012) and compared to PRE/PF (z=2.275, p=0.023). The “maximal 

dorsiflexion moment” was higher in condition PRE/NORM compared to POST/NORM (z=2.353, 

p=0.019). 

Findings on the three investigated asymmetry indices, as well as on asymmetry in individual 

variables are listed in tables 3 and 4. Leg-wise effects of the interventions are listed in table 5 for 

the prosthetic legs, and table 6 for the respective sound legs.  
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Table 3: Effect sizes of exertion, increased ankle plantar-flexion, and interaction effects on indices of gait asymmetry. Asymmetry has been computed for 
each gait variable by dividing the bilateral differences with the bilateral mean. Combined indices were normally distributed over the sample of 8 unilateral 
amputees, and were statistically compared by RMANOVA. (PRE – low exertion, POST – strong exertion, NORM – initial alignment, PF – 2 deg plantar flexion) 

Asymmetry 
indices            

exertion plantar-flexion interaction 

PRE/NORM PRE/PF POST/NORM POST/PF p
 p p

 p p
 p 

overall 0.373 ± 0.124 0.375 ± 0.123 0.377 ± 0.120 0.426 ± 0.157 0.021 0.709 0.001 0.923 0.029 0.663 

kinematics 0.298 ± 0.071 0.325 ± 0.112 0.366 ± 0.185 0.417 ± 0.228 0.069 0.496 0.001 0.933 0.000 0.957 

kinetics 0.498 ± 0.339 0.458 ± 0.302 0.395 ± 0.211 0.442 ± 0.175 0.018 0.731 0.001 0.948 0.082 0.454 



Table 4: Group mean and standard deviation of asymmetry values for isolated gait variables. Asymmetry has been computed for each gait variable by 
dividing the bilateral differences with the bilateral mean. The majority of the asymmetry values were not normally distributed over the sample of 8 
unilateral amputees. Shapiro-Wilk tests of normality were conducted, and respective p-values are reported (where p<0.05 indicates a violation of the 
normality assumption). For consistency, all variables were statistically compared by Friedman tests. 

Asymmetry indices PRE/NORM PRE/PF POST/NORM POST/PF pShapiro-Wilk 
 pFriedmann 

max knee flex 0.064 ± 0.053 0.062 ± 0.062 0.072 ± 0.047 0.061 ± 0.072 0.001 1.050 0.789 

% time of max 0.037 ± 0.025 0.043 ± 0.033 0.037 ± 0.022 0.051 ± 0.046 0.156 1.720 0.632 

max dorsiflex 0.352 ± 0.372 0.453 ± 0.451 0.377 ± 0.451 0.403 ± 0.349 0.001 3.750 0.290 

% time of max 0.111 ± 0.173 0.101 ± 0.144 0.065 ± 0.074 0.109 ± 0.125 0.001 5.962 0.113 

max plantarflex 1 0.541 ± 0.264 0.424 ± 0.349 0.524 ± 0.456 0.521 ± 0.379 0.055 1.350 0.717 

% time of pflex 1 0.238 ± 0.137 0.139 ± 0.079 0.267 ± 0.189 0.415 ± 0.353 0.389 1.192 0.755 

max pflex 2 1.481 ± 0.469 1.923 ± 0.927 2.119 ± 1.682 2.388 ± 2.317 0.093 1.950 0.583 

% time to 2nd pflex 0.038 ± 0.026 0.038 ± 0.039 0.065 ± 0.064 0.070 ± 0.055 0.001 6.342 0.096 

max knee moment 0.792 ± 0.599 0.786 ± 0.556 0.521 ± 0.458 0.660 ± 0.492 0.045 6.450 0.092 

% time of max 0.794 ± 0.589 0.488 ± 0.514 0.276 ± 0.335 0.407 ± 0.476 0.014 1.709 0.635 

max dflex moment 0.137 ± 0.129 0.264 ± 0.524 0.211 ± 0.196 0.471 ± 0.542 0.015 6.750 0.080 

% time of max 0.178 ± 0.359 0.070 ± 0.037 0.128 ± 0.129 0.132 ± 0.166 0.314 0.237 0.971 

max pflex moment 0.652 ± 0.598 0.691 ± 0.669 0.792 ± 0.776 0.761 ± 0.403 0.022 2.700 0.440 

% time of max 0.437 ± 0.556 0.449 ± 0.507 0.440 ± 0.458 0.219 ± 0.320 0.014 2.042 0.564 

STP % of cycle 0.041 ± 0.026 0.040 ± 0.042 0.064 ± 0.048 0.055 ± 0.046 0.018 0.150 0.985 

step length 0.076 ± 0.078 0.030 ± 0.029 0.073 ± 0.062 0.100 ± 0.070 0.040 7.800 0.050*  2
4
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Table 5: Group mean and standard deviation of unilateral variability values for isolated gait variables. Variables have been computed for every prosthetic 

leg and every condition. The majority of the values were not normally distributed over the sample of 12 prosthetic legs evaluated for this analysis. 

Shapiro-Wilk tests of normality were conducted, and respective p-values are reported (where p<0.05 indicates a violation of the normality assumption). 

For consistency, all variables were statistically compared by Friedman tests. 

 

Gait variable PRE/NORM PRE/PF POST/NORM POST/PF pShapiro-Wilk 
 pFriedmann 

max knee flex (deg) 65.079 ± 5.007 63.782 ± 7.495 66.688 ± 8.878 66.858 ± 8.045 0.021 8.200 0.042* 

% time of max 72.333 ± 2.188 74.250 ± 3.019 72.750 ± 2.527 73.083 ± 3.728 0.036 2.235 0.525 

max dorsiflex (deg) 15.172 ± 4.408 13.753 ± 4.552 15.418 ± 5.060 16.248 ± 6.248 0.333 5.700 0.127 

% time of max 53.333 ± 6.415 53.667 ± 7.165 52.667 ± 7.177 53.833 ± 8.441 0.000 1.473 0.688 

max plantarflex 1 (deg) -7.060 ± 2.795 -8.645 ± 3.451 -8.436 ± 4.526 -7.562 ± 6.020 0.030 2.000 0.572 

% time of pflex 1  8.167 ± 1.403 9.917 ± 1.379 8.333 ± 1.969 9.250 ± 3.621 0.187 7.619 0.055 

max pflex 2 (deg) -4.954 ± 9.675 -6.851 ± 9.909 -3.899 ± 9.274 -8.402 ± 18.089 0.012 3.900 0.272 

% time to 2nd pflex 68.667 ± 3.257 70.000 ± 3.954 68.000 ± 2.730 71.083 ± 5.712 0.014 1.750 0.626 

max knee moment (Nm) 0.966 ± 1.070 0.942 ± 0.989 1.502 ± 1.283 1.424 ± 1.301 0.005 9.000 0.029* 

% time of max 41.750 ± 30.221 36.833 ± 23.288 31.917 ± 22.857 35.500 ± 28.315 0.003 4.282 0.233 

max dflex moment (Nm) 1.623 ± 0.859 1.096 ± 0.468 0.902 ± 0.614 1.290 ± 1.233 0.000 8.500 0.037* 

% time of max 52.083 ± 16.681 48.417 ± 5.744 44.167 ± 10.853 51.250 ± 14.536 0.000 1.964 0.580 

max pflex moment (Nm) -0.406 ± 0.512 -0.228 ± 0.135 -0.298 ± 0.248 -0.164 ± 0.124 0.000 2.500 0.475 

% time of max 13.333 ± 17.510 21.083 ± 22.581 21.917 ± 25.486 34.417 ± 37.157 0.000 5.081 0.166 

STP % of cycle 64.129 ± 2.285 65.304 ± 2.528 64.327 ± 4.033 64.604 ± 4.623 0.265 1.084 0.781 

step length (cm) 70.568 ± 9.682 70.183 ± 8.003 74.816 ± 12.104 69.396 ± 12.117 0.001 1.800 0.615 







 2
5 
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Table 6: Group mean and standard deviation of unilateral variability values for isolated gait variables. Variables have been computed for the contralateral 

(sound) leg of all participating unilateral amputees for every condition. The majority of the values were not normally distributed over the sample of 8 

sound legs evaluated for this analysis. Pelvis obliquity and pelvis tilt, although not attributable to one leg side or the other are included because these 

variables were evaluated for the same 8 subject sample of unilateral amputees. Shapiro-Wilk tests of normality were conducted, and respective p-values 

are reported (where p<0.05 indicates a violation of the normality assumption). For consistency, all variables were statistically compared by Friedman tests. 

 

Gait variable PRE/NORM PRE/PF POST/NORM POST/PF pShapiro-Wilk 
 pFriedmann 

max knee flex (deg) 66.692 ± 5.536 63.304 ± 3.803 63.482 ± 3.324 62.952 ± 4.203 0.075 5.100 0.165 

% time of max 72.125 ± 1.553 72.625 ± 2.669 72.750 ± 2.053 71.750 ± 2.053 0.155 1.671 0.643 

max dorsiflex (deg) 12.412 ± 5.327 11.621 ± 7.079 13.948 ± 6.360 14.441 ± 6.419 0.282 3.000 0.392 

% time of max 49.000 ± 7.521 48.875 ± 6.010 50.875 ± 3.182 48.500 ± 4.106 0.001 1.303 0.729 

max plantarflex 1 (deg) -7.110 ± 3.212 -7.145 ± 3.290 -6.505 ± 2.392 -6.199 ± 2.187 0.088 0.450 0.930 

% time of pflex 1 9.750 ± 1.389 10.375 ± 1.188 9.250 ± 1.982 8.750 ± 2.053 0.024 1.732 0.630 

max pflex 2 (deg) -11.462 ± 10.606 -12.047 ± 11.846 -11.261 ± 10.810 -9.913 ± 9.980 0.127 1.800 0.615 

% time to 2nd pflex 67.500 ± 3.071 68.625 ± 1.598 69.125 ± 4.764 67.875 ± 2.100 0.014 4.027 0.259 

max knee moment (Nm) 0.729 ± 0.626 0.725 ± 0.715 0.663 ± 0.521 0.835 ± 0.903 0.005 0.150 0.985 

% time of max 27.875 ± 19.172 33.125 ± 21.027 27.250 ± 17.895 31.000 ± 18.974 0.001 3.164 0.367 

max dflex moment (Nm) 1.374 ± 0.373 1.326 ± 0.315 1.351 ± 0.472 1.313 ± 0.413 0.360 2.850 0.415 

% time of max 49.000 ± 2.390 49.125 ± 2.696 48.625 ± 2.264 47.125 ± 4.257 0.127 1.446 0.695 

max pflex moment (Nm) -0.315 ± 0.151 -0.312 ± 0.151 -0.285 ± 0.146 -0.256 ± 0.176 0.144 0.750 0.861 

% time of max 10.500 ± 4.986 10.125 ± 5.617 14.250 ± 19.009 13.250 ± 15.782 0.000 2.015 0.569 

STP % of cycle 63.490 ± 2.586 63.374 ± 2.481 62.821 ± 2.533 62.305 ± 1.353 0.021 2.468 0.481 

step length (cm) 73.939 ± 6.719 73.348 ± 4.929 75.118 ± 7.380 73.921 ± 7.199 0.000 1.050 0.789 

max pelvis obliquity (deg) 2.486 ± 3.820 2.308 ± 4.179 3.372 ± 3.824 3.676 ± 3.478 0.072 7.050 0.070 

max pelvis tilt 22.534 ± 11.686 20.592 ± 10.086 20.808 ± 10.580 20.039 ± 10.837 0.282 0.150 0.985 



  2
6 
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A comparison on individual asymmetry indices is given in figure 8. The respective tables of 

extracted data are attached in Appendix B. Figure 9 visualizes the averaged asymmetry indices. 

 

Figure 7: Individual asymmetry indices for all 8 subjects. Perfect bilateral symmetry would be 

represented by an index value of 0. Indices are comprised of gait variables as defined in table 2. One 

step per subject and condition was analyzed. 
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Figure 8: Comparison of asymmetry indices, averaged over all 8 subjects. Perfect bilateral symmetry 

would be represented by an index value of 0. Indices are comprised of gait variables as defined in table 

7. Error bars illustrate the variance over the sample 

Main contributor to the bilateral asymmetry in trans-tibial amputee gait were variables 

related to the ankle angle, with regard to the magnitude and time of the maximal plantar-flexion 

during the step cycle. Figure 10 shows the respective graphs pertaining to one subject. There is 

no ankle plantar-flexion in the prosthetic leg during the push-off phase. Instead, the maximal 

such ankle motion occurs at the beginning of the stance phase where the plantar flexion 

resembles that of the sound leg. As this curve is represented by two variables (maximal plantar-

flexion 1 and maximal plantar-flexion 2), the different timing and magnitude of the absolute 

maxima of ankle plantar-flexion on prosthesis and sound leg is accounted for. 
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Figure 9: Ankle flexion angle curves for prosthetic and sound leg over one step cycle for one subject 

(number 8), measured by conventional gait analysis. Steps have been normalized to the step cycle 

duration and offset values corrected for comparability. To illustrate the 2x2 design matrix, the PRE 

condition of low exertion is displayed in the top row, POST condition of “strong” exertion below, 

normal alignment in the left column, altered alignment in the right. 

 

2.4 Discussion 

Although the combined indices of bilateral gait symmetry did not indicate any significant effects 

of the subtle alignment perturbation and the increased exertion on the gait pattern, the 

individual effects appeared to be considerable. This finding demonstrates how heterogeneous 

amputee gait responses to the interventions. Considering that individual trends within the 

sample were not only different in magnitude but even in orientation, it must be discussed 

whether it is justified to expect many findings that are generally applicable. 
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Previous studies have found that subtle alignment changes do not significantly affect gait 

symmetry as measured by an index similar to the one used here (Chow et al., 2006; Sin et al., 

2001). While the composition of the indices was slightly different, this previous results were 

confirmed by our finding that neither the kinematics nor the kinetics symmetry index was 

significantly affected by the interventions.  

It does not explain the found difference in the step length asymmetry. With respect to 

variables contributing to step length, it has often been reported that no significant effect of 

alignment perturbation could be identified. That was the case for variables such as walking 

speed (Beyaert et al., 2008; Burnfield et al., 1999; Chow et al., 2006; Fridman et al., 2003; 

Sanders, Bell, Okumura, & Dralle, 1998; Schmalz et al., 2002; Van Velzen et al., 2005), cadence 

(Beyaert et al., 2008; Burnfield et al., 1999; Sanders et al., 1998; Van Velzen et al., 2005), and 

bilateral ground reaction forces (Beyaert et al., 2008; Chow et al., 2006; Geil & Lay, 2004; Pinzur 

et al., 1995; Van Velzen et al., 2005). That the data contain no significant differences for the gait 

kinematics and gait kinetics indices respectively, and barely any for isolated gait variables seems 

to confirm the findings of previous studies, such as (Chow et al., 2006), who concluded that 

within the range of acceptable alignments, various gait parameters have differing optima over 

the continuum of alignment alterations.  

While the initial hypothesis, that subtle alignment changes and physical exertion have an 

effect on amputee gait symmetry had to be rejected, clinical significance can be derived from 

individual symmetry comparisons (Figure 8). Those showed no consistent trend, but revealed 

that in some cases the asymmetry increased with the interventions (for instance in subject 2), 

and decreased in other cases (for instance in subject 3). A comparison of the two subjects may 

offer an explanation for this unexpected finding: Subject 2 is a young, very active prosthesis user 

(AAS of 27, Body-Mass-Index (BMI) of 25.3), who participated very diligently in the experimental 
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protocol, raising his heart rate from 65 to 139 beats per minute (BPM) in the process. Subject 3 

is 30 years older, less active (AAS of 7, BMI of 33.4), and a slower walker (preferred gait speed 

1.13 m/s versus 1.28 m/s). He also appeared to not have exerted himself in the same manner 

over the course of the experiment, recording a maximal heart rate increase from 71 to 102 BPM. 

It is likely that different mechanisms were leading to the observed tendencies in symmetry 

change:  

Subject 2 had initially an above-average level of asymmetry in his gait, particularly with 

respect to kinetics parameters. This may be attributed to a high sensitivity regarding the 

prosthesis modification, as well as the marker placement, safety harness and other preparations 

prior to the data collection. Age and activity level, paired with a long history of prosthesis 

experience make it likely that this subject developed very fine senses regarding slight changes of 

his artificial limb. After the plantar-flexion was increased, the asymmetry decreased. It is 

possible that this active patient had a very dynamic alignment to start with, meaning a low roll-

over resistance to facilitate extensive and fast walking. The alignment change may have relieved 

the quadriceps temporarily, by facilitating a higher forefoot resistance, which stabilized the 

prosthesis in the stance phase and led to a better symmetry between legs. After the exertion 

protocol, the kinematics asymmetry was higher than before, while the kinetics asymmetry 

remained below the level of the initial condition. The former may be attributed to the exertion, 

whereas the latter is likely due to a training effect in walking under the conditions. At the level 

of strong exertion, the alignment change had the opposite effect on the asymmetry values than 

it had in the low exertion condition. This time, all asymmetry indices increased, which was much 

in accordance with the study hypothesis.  

Subject 3 too came in with a very high level of bilateral asymmetry, especially regarding 

kinetic variables. In his case, this is attributed to a relative lack of practice in prosthesis use. 
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Being an amputee for 2 years at the time of the study, this patient was still in the process of 

becoming confident with his prosthesis. The fact, that his asymmetry indices declined over the 

entire session, almost irrespective of intervention, is possibly solely the result of a training 

effect. The test was conducted in the morning, and it is likely that it was the first time on that 

day, that this subject walked long distances. As a novice, he would be expected to need a longer 

accommodation time every time he puts on the prosthesis. In that context, subtle perturbations, 

such as the 2 degrees of increased plantar-flexion, are likely not to have any impact. The 

exertion, although perceived as “strong” after the exertion protocol, may in fact not have been 

all that high if the heart rate increase is any indication. There is no doubt that the subject was 

becoming tired of walking, but it may have been a different quality of tiredness, and less related 

to physical exhaustion than for instance in subject 2. 

An interesting finding in subject 3, that he shares with subject 1, and to some extent with 

subjects 6, 9, and 10, was the fact that the kinematics index behaved disproportional to the 

kinetics index. In subjects 1 and 3, there is almost a constant level of kinematics asymmetry 

across conditions, while at the same time the kinetic asymmetry varies considerably. In subjects 

6 and 8, low kinematic asymmetry is associated with high kinetic asymmetry and vice versa, 

leading to an almost constant combined index. In subject 10 both indices seem generally 

unrelated. This suggests the necessity to consider kinetic parameters in clinical practice, as the 

commonly applied and easily determined criterion of kinematic symmetry is not always 

indicative of kinematic symmetry.  

Only two subjects (2 and 7) showed a sizeable decrease in bilateral symmetry as a result of 

the combined alignment perturbation and exertion. That the majority of subjects had no such 

effects was unexpected, based on the hypothesis that assumed that there would be generally a 

negative effect on gait symmetry when the alignment is made worse, and when the amputee 
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gets too exhausted to activate compensation patterns. Four possible explanations for this 

unexpected finding are offered:  

1) For one, the chosen alignment perturbation was indeed a subtle one, and one that is 

designed to stabilize the stance phase in the prosthetic leg by facilitating an earlier full foot 

contact in the step cycle. The undesirable effects of this kind of misalignment are that the 

initiation of swing phase is encumbered by the higher forefoot moment, that a shorter step 

length reduces walking speed, and that the ground clearance in the swing phase becomes 

smaller. In some participants of this study, the positive effects that subjects benefited from 

seemed to have outweighed those negative effects. In order to provoke a measureable effect, 

more severe perturbations would be required. However, as soon as perturbations fall out of the 

range of acceptable alignments, the purpose of the study to identify differences within that 

range would be abandoned. 

2) Furthermore, there is a possibility that our alignment perturbation had not for every 

subject worsened the alignment after all, but had quite the opposite effect. Both the original 

and the altered alignment were within the acceptable range of alignments, which makes a 

distinction in alignment quality by traditional standards impossible. The assumption that the 

original alignment is the best possible one was based on the fact that this alignment had been 

the result of dedicated optimization efforts of the respective prosthetists for their patients. 

Besides, it would be the preferable of the two versions in the light of gait efficiency 

considerations. As discussed above, an increased plantar-flexion of the prosthetic foot can be 

understood as a “built-in uphill slope”. It suggests itself to have initial alignments standardized 

across the sample, in order to assure more homogenous effects. While this would help achieve 

statistical significance, it would jeopardize the practical relevance, considered that neither 

sample nor intervention would be representative of given facts in the field. 
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3) Another factor that might have not played its assumed role was the exertion. Again, the 

magnitude of the intervention was fairly subtle. Subjects were not entirely tired out to test the 

respective effect, but they were asked to report their perceived exertion level, and testing was 

concluded when this level was “strong”. Much like the alignment change, there are two possible 

effects that have to be accounted for here. One is of course the desired physical and mental 

exhaustion that could lead to a less controlled and energetic gait pattern. The other is a training 

effect, or at least warming-up effect that could make the gait more fluent and confident. At the 

“strong” level of exertion, many subjects may have just had reached a state of “looseness” that 

actually benefited their gait symmetry. It is recommended to amend the protocol in the interest 

of provoking higher levels of exertion. This raises ethical questions, and increases the list of 

exclusion criteria, as it is unadvisable to subject some sub-populations to strenuous exertion 

protocols.   

4) A systematic issue with the assessment of exertion may have further affected our 

measurements. It was fairly obvious that subjects had different ambitions when it came to 

reporting their exertion level. When the protocol had been explained during the informed 

consent procedure, it was pointed out that the decision about the cut-off point was to be made 

by the participant. They knew that this point was supposed to be the RPE level 5, and they were 

all alike oriented to the nature of the RPE scale. Yet, some of the subjects developed an almost 

competitive spirit to demonstrate how many repetitions of the walking loop or the stairs they 

could manage before that threshold was reached, while others were very comfortable with the 

option to call it a test-day as soon as they had provided a bare minimum of repetitions, and a 

slightly elevated heart rate to show for it. The testing protocol did not allow for a respective 

correction of the scores, but it might be worthwhile to account for sincerity of effort in future 

studies. 
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Six limitations of this study should be mentioned here, as they are to be kept in mind when 

interpreting the presented results. They may also inform the design and scope of follow-up 

studies:  

1) The lack of significant findings with respect to the overall gait symmetry index disallows 

addressing of the sub-hypothesis that the alignment perturbation will have an effect on 

kinematics parameters only in combination with physical exertion, and that kinetic parameters 

will be affected immediately. There seems to be a trend, that certain kinematics parameters are 

indeed affected not by the alignment changes but by exertion. On the kinetics side, the 

magnitude of the dorsi-flexion moment in the prosthesis appeared to be immediately affected 

by the alignment change, especially at a low exertion level. 

2) Another limitation was identified with the selected method of quantifying gait parameters, 

which in some cases is not sufficient for the detection of differences. That it may also be of 

relevance how a parameter curve behaves apart from its maximum and the time to maximum 

demonstrates the example of an the ankle flexion moment curve in figure 11, which  shows the 

superimposed curves of the ankle moment in the prosthesis for conditions PRE/NORM and 

PRE/PF for one subject. The maxima, and their times of occurrence are essentially equal, yet the 

slopes of the ascending component are clearly different. This is likely to signify a practically 

relevant issue, as the smoothness of the foot rollover motion factors into the efficiency and 

appearance of amputee gait. The unsteady trajectory of the forefoot moment curve suggests a 

poor balance on the prosthetic foot, which may be caused by too stiff a foot design, or – as in 

the context of the here discussed study most likely – a misalignment of the ankle flexion 

position.  
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Figure 10: Prosthetic ankle moments measured with normal alignment, and with by two degrees 

increased plantar-flexion alignment (sample from subject 10). Although maximum, and time of 

maximum are almost identical, the shape of the curves is not the same. 

3) A possible way of accounting for those differences in analysis is the computation of root 

mean square (RMS) errors between time-normalized parameter curves (see table 7). However, 

without the possibility of estimating within subject variability (see figure 12) it remains 

challenging to statistically analyze differences between groups (or repeated measures).  

Table 7: Bilateral root mean square deviations of ankle moment curves 

 
Subject 1 2 3 6 7 8 9 10 

C
o

n
d

it
io

n
 

PRE/NORM 0.0871 0.4075 0.2645 0.1066 0.3717 0.0663 0.1426 0.3170 

PRE/PF 0.0673 0.3349 0.3159 0.1026 0.2562 0.2734 0.0877 0.4663 

POST/NORM 0.0838 0.5371 0.2218 0.1484 0.2873 0.1872 0.1891 0.1988 

POST/PF 0.1548 0.5167 0.3187 0.0745 0.5343 0.1864 0.0885 0.3242 
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Figure 11: Visualization of bilateral ankle moment differences across all 8 subjects. Dotted lines mark 

the standard deviation envelope. 

The same argument holds true for the previously applied method of extracting comparison 

variables from the curve shapes, as per subject and intervention only one trial could be included 

in the statistic. This is an area where the reliance on force plate measurements is a limitation.  

4) Other possible limitations of this study design to be mentioned are the accuracy and 

reliability of the alignment changes, as well as the exertion measurements. Unlike in many 

previously published studies, the alignment modifications were realized without the subjects 

taking their prostheses off. While that disallows for a direct measurement of the ankle angle, it 

eliminates the possible inconsistencies in socket rotation and tissue compression that often 

come with the process of doffing and donning an artificial limb. Another constraint would have 

been the time requirement to do that, which would have aggravated another limitation: The 

exertion measurement had the limitation, aside from the subjectivity of the self-report scale, 

that there was an inevitable recovery phase in which the respective data collection fell. After the 
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subject had reported to have reached the desired level of perceived exertion, a few walking 

trials with normal alignment were recorded, upon which the alignment was changed, and the 

final walking trials were collected. The alignment change took at least 20 seconds, which for 

most subjects was enough time to lower their heart rate significantly, and it must be assumed 

that the actual exertion during the last trials was quite different than the one during the second-

to-last trials. Due to the time required for the exertion protocol (as well as the subsequent 

recovery phase) no randomization of trials was possible. 

5) Several questions arise from the inclusion of two bilateral amputees in the study sample. 

As it is likely that gait symmetry follows different mechanisms when there is not one sound leg 

to possibly compensate for deficits on the prosthetic side, these two subjects were not included 

in the respective analysis of bilateral symmetry. For the analysis of within-leg differences 

however, data from the bilateral amputees were included, following the reasoning that in this 

repeated-measures design every participant serves as their own control, and that a certain 

comparability of within-leg parameters is given across unilateral and bilateral amputees. For 

that it must be assumed that when their prosthesis alignments were modified only one side at a 

time, the respective other leg will remain a constant that does not interact with the 

intervention. 

6) A similar justification exists for forgoing a homogenization of prosthetic technology and 

building principles for the purposes of this study. There are a tremendous number of variables 

that go into the performance capabilities of a prosthesis that it is practically impossible to 

control for all of them. Instead, it was conceded that different technology works best for 

different amputees, and it was assumed that the prosthesis they were walking on were built and 

aligned with that in mind. Again, the longitudinal study design allows the detection of relative 

differences within subjects irrespective of their initial within-differences. 
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2.5 Conclusion 

It was shown that certain parameters of amputee gait symmetry, most notably step length 

difference, change with the level of exertion. Subtle alignment perturbations have not an 

immediate negative effect on step length symmetry but have a significant negative effect in 

interaction with an increased exertion. The results of this study suggest that various effects of 

exertion and alignment alteration are of a positive nature in some amputees, where the 

measured bilateral asymmetry became smaller with increasing exertion. While those cases 

contradict the initial hypothesis that the amputee gait pattern under real-life conditions would 

be worse than the one displayed during optimization sessions in the prosthetics lab, it remains a 

considerable fact that the gait pattern does change with exertion after all. In the clinical field, 

this could suggest having deliberately time allotted for the amputee to walk on a new prosthesis 

until being “strongly” exerted, even before the final alignment rectification is attempted. In 

many instances, this procedure is de-facto followed already, although it is usually involuntary 

and may be perceived as a nuisance caused by insufficient efforts sides the prosthetist or the 

amputee during the dedicated alignment session. Our results support the notion that there is 

good reason for multiple alignment sessions, and that a prosthesis alignment cannot be 

optimized within one session. It is also suggested to allow amputee’s exertion levels to increase 

during alignment sessions. Furthermore, kinetics parameters should be considered in the 

assessment of gait symmetry in amputees, as they are not always proportionally related to 

kinematics parameters. 

The conclusions to be drawn also include the reaffirmed notion that lower limb amputees 

are too heterogeneous a population to allow very detailed generally applicable standards for 

prosthetic fit and alignment. Many of the gait parameters investigated for this study followed no 

consistent patterns across our sample population. This contributed to the lack of statistical 
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significance found in the group differences. Regardless of that, there were difference between 

interventions that would be significant for the individual subject, which became clear from the 

verbal feedback that study participants provided. In several cases it was reported – unprompted 

– how the alignment perturbation changed the perception of the prosthetic function, or how 

the increasing exertion led to a different utilization of the sound leg during gait.  

In the context of this research, it remains to conclude that amputee gait biomechanics need 

to be considered on an individual basis, and that future work should address the assessment of 

individual effects of prosthesis alignment changes. Following the latter objective, in the second 

part of this thesis, the described statistical procedures will be repeated with the data that were 

collected from the integrated sensors. This allows a consideration of within-trial variability by 

evaluating a number of consecutive steps, and might help receive more accurate estimations of 

variance between trials, e.g. intervention.  

However, the data that can be obtained from integrated sensors are limited in scope to 

forces and moments, which reduces the number of parameters to be included in the analysis. 

Likewise, it is unsure to what extent integrated sensor data are comparable to conventional gait 

analysis data. In a first step, the concurrent validity of those measurements will therefore be 

investigated, thereby addressing the second aim of this study. 
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3 Concurrent validity of trans-tibial amputee gait analysis measures 

based on prosthesis integrated sensors 

3.1 Introduction 

Assessing human motion by means of wearable or elsewise attached measuring devices has long 

been of interest in applications where conventional gait analysis (CGA) methods have 

considerable limitations, as is for instance the case in outdoor applications. Devices such as 

wearable goniometers (Gibbs & Asada, 2005; Munro, Campbell, Wallace, & Steele, 2008), arrays 

of gyroscopes and accelerometers (Liu, Inoue, & Shibata, 2009; Lorincz et al., 2009) and 

instrumented shoe insoles (Bamberg, Benbasat, Scarborough, Krebs, & Paradiso, 2008; Morris & 

Paradiso, 2002) have been proposed and used for general activity monitoring (Mathie, Coster, 

Lovell, & Celler, 2004), classification (Parkka et al., 2006), and gait analysis purposes (Takeda et 

al., 2009). Many of those applications are also of interest in prosthesis research. 

However, many concerns exist around wearable measurement equipment. One issue with 

such more or less loosely attached devices is their displacement relative to the body joint or 

other entity of interest, and the corresponding motion artifact. Beyond that, it must be 

considered that the measured variables are still not entirely congruent with the actual variable 

of interest, although obtained in close proximity to their origin. In order to, for example, obtain 

the flexion angle at the knee center of rotation, a computation is required that translates the 

data from the sensors on the surface of the leg to the knee center, much like the actual joint 

centers are routinely computed from the tracked location of skin surface markers in their 

vicinity. There is arguably some inaccuracy in deriving joint kinematics, and even more so, joint 

kinetics data from external measurements.  

Accordingly, various approaches of directly implanting sensors have been reported. Widely 

noticed series of studies were conducted based on wireless force sensing equipment that had 
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been adapted to be implanted during hip replacement surgery (Bergmann et al., 2001; Hodge et 

al., 1989). Previously, authors have used measuring devices that were temporarily anchored to 

the subject’s tendons (Dennerlein, Diao, Mote Jr., & Rempel, 1999), inserted between the 

articulating compartments of the knee joint (Anderson et al., 2003; Harris, Morberg, Bruce, & 

Walsh, 1999) or have mounted motion capture markers on the bones (Manal, McClay Davis, 

Galinat, & Stanhope, 2003). Integrated force transducers were also used in animal studies 

(Holden et al., 1994) and cadaver studies (Rupp, Hopf, Hess, Seil, & Kohn, 1999). These examples 

illustrate the importance that has been assigned to this kind of data and that is reflected in the 

extraordinary efforts that are being made to obtain the desired information. 

In many instances, the respective measurements were of an own quality, that made it 

difficult to compare them to conventional methods. This quality, after all, was the motivation for 

utilizing those new approaches. When, as in (Liu et al., 2009), a novel system was validated with 

CGA, correlations and root mean square errors were calculated to quantify the accuracy. In 

other cases, the question was reversed, and  the integrated sensor measurements were instead 

used to validate computer simulations (Li et al., 2011; Papaioannou, Demetropoulos, & King, 

2010). Among the most obvious disadvantages of implanted or integrated sensors is their 

intrusiveness, which makes it challenging to set up ethically justifiable in-vivo studies with 

human subjects. Essentially, potential subjects can only be patients who for medical reasons are 

scheduled to have a surgical procedure that happens to allow the implementation of the data 

collection equipment. This, in turn limits the sample population in that no subjects without prior 

history of medical problems can be included. Findings that have been derived from data 

collected by instrumented hip replacement prosthesis are therefore limited in their applicability 

to the majority of the general population who had not have hip replacement surgery. Other 

disadvantages are the considerable technical effort that has to go into designing, producing, 
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installing and maintaining a research grade tool that must not interfere with its environment. 

That is, for instance an instrumented hip prosthesis cannot be less stable or more failure prone 

than its non-instrumented equivalent.  

In amputee gait studies, the implementation of wearable sensors is much more 

straightforward, as the prosthetic structure that takes over the function of the lost limb is easily 

accessible and modifiable. Accordingly, there have been a number of instances where dedicated 

sensors were integrated into artificial legs for the purposes of gait analysis data collection. Most 

notably are probably the various installments of “intelligent” prostheses, where sensor 

technology is used to not only analyze the patient’s gait, but to make those analyses the base on 

which the likewise integrated microprocessor adapts the characteristics of the prosthesis to 

meet the respective requirements (Bellmann, Schmalz, & Blumentritt, 2010; Kirker, Keymer, 

Talbot, & Lachmann, 1996; Orendurff et al., 2006). Modern electronically controlled prosthetic 

knee joints have up to seven integrated sensors, including gyroscopes, goniometers, 

accelerometers, moment sensors and force cells (Blumentritt, Bellmann, Ludwigs, & Schmalz, 

2012). Similar technology is integrated in many of the currently available or developed active 

ankle components (Au, Berniker, & Herr, 2008; A. Hansen, Gard, Childress, Ruhe, & Williams, 

2007). The concept of integrated sensors as a stand-alone component in artificial legs is by 

comparison less popular, which may be explained with the unfavorable ratio of drawbacks and 

benefits. Aside from the cost aspect, such sensor units will also have a negative influence on 

weight, structural stability, and appearance of the prosthesis. Hence, the available sensor data 

must be considered valuable enough to be able to outweigh the downsides. Against that 

background, it may be asked which information is indeed that useful. Among the few prosthesis-

integrated sensor units currently on the market, some are intended to provide an activity 

monitoring of sorts, such as the Endolite “Limb Activity Monitor” (Blatchford, 2012), and the 
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Orthocare “StepWatch Monitor” (Orendurff, Schoen, Bernatz, Segal, & Klute, 2008). Measuring 

amputee activity levels is an important objective, as this factor informs the prescription of 

prosthetic components, and may be used as an outcome measure as well. However, the mere 

assessment of step counts and general activity as measured by accelerometers does not 

necessarily require prosthesis-integrated sensors. In research studies, the higher accuracy of 

prosthesis-integrated accelerometer measurements (Ooi, Abu Osman, & Wan Abas, 2010), force 

transducers (Neumann, Yalamanchili, Brink, & Lee, 2012; Sanders, Miller, Berglund, & Zachariah, 

1997), and load cells attached to osseointegrated prosthesis fixations (Frossard, Stevenson, 

Sullivan, Uden, & Pearcy, 2011) has been used to investigate biomechanical questions beyond 

simple activity measurement. 

Recently, prosthesis integrated tools for the measurement of amputee gait parameters have 

become commercially available, such as the Orthocare Compass (Boone, 2005) and the College 

Park iPecs (Leydet, Harrington, Fedel, Link, & Street, 2007). Their intended use as a research tool 

raises questions on the comparability of the respectively obtained data with conventional gait 

analysis data. While those systems have been diligently tested with respect to their technical 

function and inherent measurement accuracy, it remains unclear how their usability in a clinical 

environment is. In other words: It may safely be assumed that the sensor technology within 

those systems is matured, that the manufacturer calibrated the systems well, and that on a test 

stand the accuracy and reliability of readings will justify all reasonable demands. Yet, that does 

not guarantee an automatic comparability of such obtained gait data with equivalent data that 

has been collected by other means. The differences in working principle between a conventional 

force plate and an integrated sensor may lead to unforeseen deviations that are important to be 

quantified. 



www.manaraa.com

45 
 

 

In the context of research studies, integrated sensors may be used for the collection of 

prosthesis kinematics parameters over a large number of consecutive steps. As long as statistical 

comparisons are to be conducted only between data sets that were obtained by this method, 

the external validity may be negligible. However, in order to conduct multivariate analyses that 

include parameters not measurable by the integrated sensors, such as gait kinematics variables, 

it becomes necessary to evaluate the comparability of both systems. In a typical gait laboratory, 

the capture volume of the motion analysis system may be large enough to record about four or 

five complete step cycles, although only a subset of them will involve the force plates (e.g. one 

step cycle when two force plates are used). If one were to consider now the kinematic data of 

those five step cycles together with the kinetics measured by the integrated sensor, in order to 

increase the step sample size, it would be of importance to know how this data compares to the 

usually discussed force plate data. More generally, if findings that have been obtained by novel 

methods are to be reported, it must be considered to what extent they are comparable with 

more traditional methods. The purpose of this study was to validate the measurements of the 

prosthesis-integrated sensor system “iPecs”, in order to explore the usability of this tool for 

subsequent research studies. 

3.2 Methods 

A CGA was conducted with all ten subjects (demographic and anthropometric data are listed in 

table 1 in the introduction chapter), wearing their respective original prostheses, and walking at 

a self-selected speed through the capture volume of the motion analysis laboratory (10 camera 

system (Cortex ®, Motion Analysis Corporation, Santa Rosa, CA, Sampling frequency 100 Hz), 

with 3 force plates (AMTI, Watertown, MA), Sampling frequency 1000 Hz). A modified Cleveland 

Clinic marker set was used, comprising of the customary leg and head markers (figure 4), but 

limiting the number of upper extremity and trunk markers to the three pelvis defining markers 
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over the left and right ASIS, and the Sacrum. The prostheses of all ten participants of this study 

were equipped with integrated sensors prior to any data collection. To that end, the initial 

alignment of the doffed prosthesis was documented, the prosthesis was disassembled and the 

sensor unit temporarily installed between the distal end of the socket and the proximal end of 

the foot component without changing the overall alignment or length of the prosthesis.  

The ipecs sensor was installed in the original prosthesis, and programmed with the 

respective dimensions of the artificial leg for the online computation of joint moments in ankle 

and knee joint. To do so, the distance of the sensor’s center to the adjacent leg joints was 

measured with a ruler and input into a respective interface in the sensor software on a laptop 

PC5. As most prosthetic feet do not feature a discrete ankle joint axis, the location of the ankle 

was estimated from the proportions of the foot, and the height of the malleoli on the contra-

lateral leg. The knee axis was likewise approximated from the geometry of the socket, and 

placed about 2 cm proximal of the patella cutout vertically, and at the 60/40 division of the knee 

diameter sagittally (Nietert, 2008). (The same method was used for the placement of reflective 

markers for the motion analysis system.) 

Following the marker placement, the sensors were zeroed to eliminate any baseline offset. 

Using the wireless transmission between sensor and computer, data collection at a sampling 

rate of 250 Hz was started at the beginning of the experiments, and was continued 

uninterrupted until the conclusion of all trials. The sampling rate is a compromise of high 

accuracy and low data volume, and was selected to be easily synchronized to measurement 

frequencies within the CGA system. The laptop computer had to be carried along when the 

                                                           
5
 The iPecs software leaves the definition of moment axes to the user. Correctly denoted “proximal 

moment” and “distal moment” respectively, these variables will in the following be referred to as “knee 

moment” and “ankle moment” according to the location of the defined moment axes within the 

prosthesis structure. 
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subject left the gait laboratory in order to assure continued data streaming. On average, the 

data collection sessions lasted for about 30 minutes once all the preparations had been 

completed. A member of the research team was filming the prosthesis during the time of sensor 

data collection with a digital video camera. The video data was intended as a backup to the time 

coding information of the integrated sensors, to assure accurate identification of steps that 

were measured concurrently with force plate and integrated sensor. 

For every subject and every of the four intervention, one such step cycle was identified and 

used for the calculation of concurrent validity of the sensor measurements. 

Due to technical difficulties, only data of seven subjects could be used for that purpose (see 

discussion section). To identify steps on the force plate in the mobile sensor data, the video data 

was evaluated, using step counts beginning from an easily identifiable situation, such as 

“standing on both legs”, until reaching the force plate (figure 13). In three cases, this method 

could not be applied, as the necessary walking steps were not clearly captured on video. 

 
Figure 12: Sample data of the longitudinal force curve that was used to identify step cycles of interest. 

After standing on both legs for the first ten seconds of this sample, the subject started walking by lifting 

the prosthesis at about 0:00:39. The corresponding video data shows that the fifth step on the 

prosthesis side hit the force plate. This step cycle can be found by counting the intervals in the force 

graph. It is between 0:00:43 and 0:00:44. 
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Computed variables for each so identified step included the maximal knee flexion moment, 

ankle flexion moment, times to those maxima, stance phase percentage of stride time, and 

stride time itself. Collected CGA and iPecs data were normalized to 100 samples per step cycle in 

order to assure comparability between data sets.  

Concurrent validity was estimated by linear correlation analysis in PAWS 19. This method is 

consistent with that used in previously reported comparable studies, such as (Chesnin, Selby-

Silverstein, & Besser, 2000; Cutlip, Mancinelli, Huber, & DiPasquale, 2000; Raffin, Bonnet, & 

Giraux, 2012). Two different sets of variables were analyzed separately. A linear regression 

analysis was conducted for all 100 data points of the respective step time normalized curves 

from iPecs and CGA. Pearson coefficients were then averaged for all samples including one step 

each per condition and subject. This gave a sample size of 40 (10 subjects, 4 conditions) which 

was sufficient to achieve the desired statistical power. Secondly, the extracted variables of gait 

curve peaks and time-to-peaks were compared as well, using linear correlation over all included 

values. 

3.3 Results 

Joint moments and forces showed strong correlation between conventional gait analysis and 

integrated sensor data. In figure 14, the ankle moment as concurrently measured with both 

systems is plotted for visualization. A linear regression analysis including all 100 data points of 

either sample resulted in a correlation coefficient R of 0.978, confirming the notion of a high 

correlation between those measures of ankle moment. The same linear regression analysis was 

conducted for every of the seven subjects, leading to an overall Pearson coefficient R of 0.887 (p 

< 0.001). 
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Figure 13: Ankle moment of a sample step, measured by conventional gait analysis (dark line) and 

prosthesis integrated sensor (light) 

Correlation of force measurements was strong as well. Vertical forces measured concurrently 

by the force plate and the integrated sensors are plotted for one subject in figure 15. The 

correlation was even stronger than for the ankle moment, with R= 0.936 (p < 0.001) for the 

vertical force.  

 

Figure 14: Concurrent measurement of vertical force (e.g. Fz) in the prosthetic leg of Subject 10 during 

walking with low exertion, increased plantar flexion 
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For the knee moment, which is calculated similarly to the ankle moment in the ipecs, no 

separate correlation analysis was conducted. Instead, an observed apparent deviation (figure 

16) from the expected curve shape (figure 17) in some samples prompted a validation of the 

computation algorithm by comparing the results to manually calculated knee moments. 

 

Figure 15: Sample comparison of knee moment curves as computed by the integrated sensor algorithm 

(light line), and calculated manually (dark line), based on the moments and forces measured at the 

center of the ipecs, and the vertical distance between the center of the ipecs and the knee axis. 

 

Figure 16: Normal gait knee flexion moment curve (from (Powers, Rao, & Perry, 1998) with permission). 

The vertical dashed line signifies the transition from stance to swing phase. 
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A visual comparison of the respective grey curves in figures 16 and 17 confirms that the 

direct computation of the knee moment based on ipecs raw data delivers a good approximation 

of the expected curve shape. The Pearson correlation coefficient for the manually calculated 

proximal knee moment data and the respective data concurrently obtained by CGA in this case 

was R = 0.753 (p < 0.001). Given the limitations of this computation method, and the fact that 

the knee moment as a variable is only of secondary concern in the context of this study, no 

further analyses pertaining to this variable were conducted.  

The reliability of extracting maxima, minima, and occurrence times thereof within the gait 

cycle was also estimated (table 8). With respect to the ankle moments, those variables were 

again closely related to those derived from conventional measures. After eliminating two 

outliers, correlation coefficients were between 0.46 and 0.92 (table 9). Of the analyzed 

variables, the “% times of maxima” had the weakest correlations, even though the measured 

occurrence times differed by just 9% of the gait cycle at most. The average difference between 

measurement methods was 3.64% for the time plantar flexion moment maximum, 2.6% for time 

of dorsi-flexion moment maximum, and 0.04% for time of vertical force maximum. At stride 

durations of 1.05 s on average, those percentages translate to deviations of less than 40 ms, 

which seems acceptable. 
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Table 8: Extracted values for ankle moment and vertical force between CGA and ipecs data. Table is continued on the next page. Corresponding variables 

were included in correlation analysis. For a second analysis, two outliers were removed (stroked through: Subject 7 PRE/PF, and subject 10 PRE/PF). 

Moments and forces were normalized to body weight, to appear unit-less for correlation purposes. 
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Condition 

Conventional Motion Analysis Prosthesis Integrated Sensor 

max Mankle  %max  min Mankle %min  max Fz %max max Mankle  %max min Mankle %min max Fz  %max 

1 

PRE/NORM 1.313 46 -0.252 8 1.038 9 0.111 54 -0.039 9 1.079 10 

PRE/PF 1.259 49 -0.282 10 0.977 12 0.107 51 -0.035 10 1.006 12 

POST/NORM 1.169 48 -0.311 8 0.955 48 0.109 50 -0.030 9 0.982 48 

POST/PF 1.254 46 -0.246 8 0.941 47 0.110 48 -0.033 9 1.001 48 

2 

PRE/NORM 1.426 48 -0.095 6 1.018 19 0.128 50 -0.020 8 0.980 18 

PRE/PF 1.442 48 -0.109 8 1.026 19 0.122 52 -0.021 8 0.937 18 

POST/NORM 1.399 46 -0.090 5 1.131 16 0.129 49 -0.023 6 1.042 15 

POST/PF 1.156 46 -0.093 4 0.976 10 0.128 50 -0.022 9 0.970 19 

3 

PRE/NORM 0.877 49 -0.291 8 0.982 32 0.080 54 -0.027 11 1.048 24 

PRE/PF 0.995 49 -0.292 7 0.988 38 0.080 53 -0.023 3 1.096 16 

POST/NORM 0.952 52 -0.262 8 1.000 22 0.079 56 -0.023 13 1.069 25 

POST/PF 0.833 49 -0.252 8 1.069 22 0.078 54 -0.033 10 1.085 22 

7 

PRE/NORM 1.744 45 -0.412 10 1.091 45 0.155 50 -0.061 15 1.103 48 

PRE/PF 1.645 47 -0.433 9 1.112 16 0.073 27 -0.054 47 0.959 32 

POST/NORM 1.693 47 -0.512 9 1.037 47 0.146 47 -0.073 14 1.052 46 

POST/PF 1.651 47 -0.519 9 1.015 44 0.138 52 -0.058 12 1.046 22 
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Condition 

 

Conventional Motion Analysis Prosthesis Integrated Sensor 

max Mankle  %max  min Mankle %min  max Fz %max max Mankle  %max min Mankle %min max Fz  %max 

8 

PRE/NORM 1.516 47 -0.097 6 1.156 18 0.116 46 -0.031 6 1.134 15 

PRE/PF 1.448 45 -0.068 4 1.112 16 0.120 50 -0.036 9 1.148 16 

POST/NORM 1.367 47 -0.243 7 1.136 17 0.123 46 -0.045 9 1.144 16 

POST/PF 1.394 45 -0.139 6 1.174 15 0.120 47 -0.035 7 1.141 15 

9 

PRE/NORM 1.369 49 -0.246 9 1.069 17 0.123 53 -0.043 12 1.117 20 

PRE/PF 1.371 47 -0.210 9 1.259 12 0.119 51 -0.053 11 1.174 14 

POST/NORM 1.359 46 -0.332 7 1.200 13 0.124 54 -0.057 13 1.333 16 

POST/PF 1.314 47 -0.213 6 1.147 15 0.126 54 -0.044 13 1.198 18 

10 

PRE/NORM 1.715 47 -0.136 7 1.171 17 0.140 50 -0.052 10 1.204 14 

PRE/PF 1.596 48 -0.066 67 1.159 13 0.120 51 -0.046 9 1.128 17 

POST/NORM 1.674 45 -0.390 4 1.166 16 0.138 51 -0.073 7 1.294 8 

POST/PF 1.679 46 -0.269 6 1.170 15 0.135 54 -0.064 8 1.206 15 

 
 

Table 9:  Correlation coefficient R for CGA and ipecs 

 max Mankle %max min Mankle %min max Fz %max 

all 7 subjects, 4 conditions 0.900814 0.444984 0.639149 0.016421 0.8186 0.958319 

without trial 7/2 and 10/2 0.922775 0.461602 0.66005 0.535888 0.80863 0.851608 

 

 5
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The used iPecs unit displayed inconsistencies with respect to the actual sampling frequency. 

That had been set to 250 Hz, but turned out to considerably deviate from that value. 

Comparison with video data suggests actual sampling rates between 172 and 250 Hz (table 10 

and figure 17). The accuracy of the digital video camera that delivered the reference time base 

was subsequently tested by recording a clock for one hour, and comparing video time and clock 

time every 10 minutes. Deviations were below the detectable threshold of 1 second. 

Table 10: Sampling frequency deviations, as observed in one data collection file. During the roughly 20 

minutes of continuous data collection, several events occurred that allowed synchronization of the 

video and ipecs clocks (Standing, sitting, stair climbing, all leaves a typical pattern in the vertical force 

curve).  

Video 

time/s 

ipecs 

time/s Gap/s 

 Expected frame 

count at 250 Hz 

Actual frame 

count 

Instantaneous 

frequency/Hz 

28 28 0 7000 7000 250 

42 39 3 10500 9750 196 

123 110 13 30750 27500 219 

188 165 23 47000 41250 212 

239 200 39 59750 50000 172 

367 299 68 91750 74750 193 

516 419 97 129000 104750 201 

611 508 103 152750 127000 234 

715 603 112 178750 150750 228 

750 637 113 187500 159250 243 

837 718 119 209250 179500 233 

897 770 127 224250 192500 217 

1015 878 137 253750 219500 229 

1110 960 150 277500 240000 216 

1147 997 150 286750 249250 250 

1192 1040 152 298000 260000 239 
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Figure 17: Graphical representation of changes in sampling frequency over the course of a continuous 

recording with the ipecs sensor 

 

3.4 Discussion 

Validity of the prosthesis-integrated measurement of kinetic variables is given for both the 

ground reaction force and ankle moment, which represent a close approximation of respective 

variables obtained from CGA. The proximal moment, if it is to be interpreted as knee moment, is 

best computed directly from the data measured at the center of the ipecs. Parameters that are 

based on time measurement could not be sufficiently determined, as the sampling frequency of 

the integrated sensor was subject to irregular fluctuations. 

No previous peer-reviewed literature on the concurrent validity of the iPecs unit could be 

found. The manufacturer reports an accuracy of 1 to 1.5% and a non-linearity of less than 0.5% 

(CPI, 2011), although this refers to the actual measured forces and moments and likely not to 

the sampling frequency. Statements from (Papaioannou & Wood, 2011), as well as unpublished 

works (Dang, 2010; LeGare, 2009) give no indication of considerable problems with the 

reliability or validity of the data. 
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In validating ipecs measurements by correlating them to concurrent CGA measurements, a 

prerequisite for future use of the device in research and clinical practice is provided. This study 

showed that the results of integrated sensor measurements are comparable to conventional 

methods, but not entirely identical. While integrated sensors offer the advantage of continuous 

and direct capturing of kinetics parameters of prosthesis gait, it is important to carefully 

consider the systematic differences between CGA and for instance the ipecs device.  

One such aspect is the different definition of the coordinate system within which vectors are 

described. Unlike gait laboratory coordinate systems that are generally aligned with the force 

plates, and thus fixed in space, the ipecs coordinate system originates at the center of the 

sensor unit, and moves with it. Only for the short instances in the gait cycle when both 

coordinate systems align, represent the respective Fz - vectors the same actual force. 

Irrespective of that, ipecs ankle moment and longitudinal force, although not to be used 

synonymously with ankle moment and vertical force measured by conventional methods, hold 

significant information on gait parameters, such as bilateral weight distribution, foot placement, 

and utilization of energy-storing-and-return capabilities of the component. It might even be 

argued, that the longitudinal force is of higher practical relevance than the vertical force that is 

reported with respect to a global coordinate system. When it, for instance, comes to estimating 

impact forces on the residual limb or on prosthetic components, it seems more appropriate to 

measure these variables directly, than deriving them cumbersomely from externally measured 

force and kinematics data. The appropriateness of describing joint moments and forces in 

different reference frames, even if that means that “…they represent subtly different 

biomechanical quantities” has been discussed before (Schache & Baker, 2007). 

Explanations for discrepancies between measurements from CGA methods and those 

performed by integrated sensor equipment, with respect to joint moments, may be found in the 
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different approaches and the respectively available database. Within the integrated sensor, joint 

moments are computed based on strain gauges measuring the bending moment at the center of 

the sensor unit, which is located in a known position between the axes of the adjacent joints of 

ankle and knee. Therefore, the information is limited to dimensions and internal moments of 

the shank segment. Segment mass and the inertial axes and angular velocity of the joints are not 

factored into the computation of the joint moments by the ipecs software, which leaves the so 

described quantity somewhat different from the conventionally calculated variable. 

One interesting application of the ipecs “knee moment” measure could be the investigation 

of the swing phase in amputee gait, where the measured bending moment in the shank could 

clearly be attributed to the actual knee moment, which so could be measured accurately and 

directly. Interesting here is that, aside from being of comparably small magnitude, the knee 

moment in the swing phase has widely not been discussed as a variable of interest in amputee 

rehabilitation research. Open questions, such as on the muscle force employed during swing 

phase knee flexion and extension, cannot be answered by merely considering force plate data. A 

common method in able bodied research is the computer simulation of muscle forces (Piazza & 

Delp, 1996), often in combination with or addition to measurements of muscle activity, joint 

angle acceleration and angle velocity (Nene, Mayagoitia, & Veltink, 1999). 

Several important limitations were noted while conducting this study:  

1) The observed issue with the sampling frequency could not be anticipated, and caused 

thereby a reduction of the available sample size for analysis. The synchronization of mobile 

sensor and force plate data was supposed to be realized by maintaining a common time base. 

Both the Motion Analysis .cap file and the ipecs streaming file have a time stamp, which should 

make it easy to find representations of the same step in both systems. As the gait data can be 



www.manaraa.com

58 
 

 

fragmented into discrete step cycles, a time resolution of about 1 second would be good enough 

for this method to work. The eventual accurate synchronization could then be based on the 

event of heel contact that leaves a clearly identifiable signature in both data sets. Due to the 

deviations in sampling frequency, it was impossible to apply this method, and the back-up 

method of analyzing video data had to be employed. 

2) The choice of quantifying concurrent validity by calculating correlation coefficients 

between gait analysis curves discounts the possibility of a linear offset or factorial error from 

one measurement method to the other. Also, after time-normalizing steps for comparison, an 

important component of the data quality has already been corrected. Nonetheless, the issues 

relating to timing discrepancies were detected beforehand, and disallowed a direct comparison 

of step durations and other time-related variables between measurement methods. 

3) Only one iPecs unit was used in this study. It could not be investigated whether the 

observed sampling fluctuation is the consequence of a malfunction of this particular unit. A 

detection of the sampling aberration earlier in the process would have prompted a timely 

replacement of the unit, and may have helped collect better data. The unit has been returned to 

the manufacturer, where the erroneous measurement could not yet be replicated. Further 

research is necessary to identify the origin of the observed frequency instabilities. 

4) The integrated sensor was only used in wireless transmission mode. A radio frequency 

transmitter is included in the mobile unit that streams data to a receiver unit that is connected 

to the computer. Possibly, this wireless transmission was a factor in the observed sampling 

frequency fluctuations. There is a second operation mode in which data is stored on a micro-SD 

card within the mobile sensor unit. Using this option may have prevented the described 

problems, and is recommended for a follow-up study. 
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3.5 Conclusion 

Despite some limitations, this method of prosthesis integrated gait data collection offers a 

quality of data that is not attainable by conventional methods. When restricted to the variables 

that have been shown to be valid, the integrated sensor measurements can be used to compare 

consecutive steps within the prosthetic leg, which is of scientific relevance in several ways. 

Firstly, the step-by-step variability can be interpreted as an indicator of gait stability. Since the 

sample size is much larger than in conventional force plate experiments, it can be expected that 

findings have a better accuracy and clinical significance. Secondly, the variance within a step 

sample can be used to compute variances between experimental interventions, which in turn 

would be useful for small-sample or even single-subject studies of prosthetic components, 

designs, or alignments. 

The gait kinetics measurements with the Ipecs “mobile gait lab” are different than expected, 

as the measured variables have either no close equivalent in conventional gait analysis (which is 

the case for the “proximal moment”), or the respective equivalent variable is measured in a 

different (static) reference frame and therefore not continuously synchronous with the variable 

described in the local reference system of the prosthesis-integrated sensor unit (such as the 

“ankle flexion moment” and “vertical ground reaction force”). In some applications, consistency 

of the sampling frequency will be a concern. Storing data within the sensor unit is 

recommended in order to be able to base time calculations and time derivatives of 

measurement variables on this information.  

Below, the application of integrated sensor measurements will be discussed in the third 

manuscript of this series. 
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4 Amputee step variance within and between conditions of different 

exertion levels and alignment perturbations in a single-subject study 

design  

4.1 Introduction 

A commonly encountered challenge in amputee gait studies is the small sample size (Neumann, 

2009), leading to results of questionable statistical and practical significance. Beyond being 

comparably small, the amputee population is also widely heterogeneous (Highsmith, Schulz, 

Hart-Hughes, Latlief, & Phillips, 2010; Pasquina et al., 2008; Rogers, MacBride, Whylie, & 

Freeman, 1977-1978). The length of the residual limb can exemplify this. Depending on 

individual given facts, diagnosis and surgical technique, a trans-tibial amputation level may be 

anywhere within the diaphysis of the tibia bone. Obviously, limb length is an important factor in 

the biomechanics of prosthesis interface and control. Therefore, two trans-tibial amputees can 

be difficult to compare if they happen to have different residual limb lengths. This motivates the 

design of repeated measures studies, where subjects serve as their own controls.  

In the previous research literature, such longitudinal study design has often been used for 

the investigation of long-term effects in leg amputees, ranging from the stability of phantom 

limb phenomena (J. Hunter, Katz, & Davis, 2008) over the improvement of weight bearing and 

walking velocity (Jones, Bashford, & Bliokas, 2001) to the 6-month survival rate based on 

physical independence (Stineman et al., 2009). While especially such studies that are based on 

comparably easy to obtain data from questionnaires or hospital records may have sample sizes 

in the hundreds or even thousands, it is much more challenging to recruit a sufficient number of 

subjects for more elaborate intervention studies. Accordingly, there is an uncountable number 

of case studies, only a few of which shall be referenced here, that for instance are trying to 

address the effects of experimental surgical procedures (Kuiken et al., 2007; Yoho, Wilson, 
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Gerres, & Freschi, 2008), socket designs (Kahle, 2002; Mitchell & Versluis, 1990; Söderberg, Ryd, 

& Persson, 2003), prosthetic components (Highsmith, Kahle, et al., 2010; Stevens & Carson, 

2007), weight loss (Sanders, Fergason, Zachariah, & Jacobsen, 2002), and even alignment 

interventions (Andres & Stimmel, 1990; Jia et al., 2008). The viability of single-subject studies 

has been discussed by (Bates, 1996), who argued that the assumptions of normality and 

independence are justified even in cases where samples are taken from the same subjects. He 

also advises “to combine group and SS [single-subject] designs to gain additional insight about 

the problem(s) of interest when the research question is appropriate.”(Bates, 1996) 

In this light, the here discussed study compared the effects of subtle alignment perturbations 

and physical exertion on gait parameters within trans-tibial amputees. Prosthesis-integrated 

sensors were used for data collection, as they – within the range of their limitations - can help 

assess the variance of amputee gait, and can thus provide a basis for statistical interpretation of 

differences between experimental interventions. While conventional gait analysis is arguably 

the gold standard of investigating gait biomechanics, it is a limitation of this method that 

subjects have to walk through the capture volume, and over the force plates. Even in the ideal 

case that subjects hit the force plates cleanly every time, the number of repetitions, and 

therefore the number of steps that can be sampled is limited by the available time, as well as 

the endurance of the subjects. In amputee populations, both the issue of hitting the force plates 

and the problem of limited physical capacity are even more pronounced, which may lead to the 

circumstance that only one valid trial per subject has to be deemed sufficient for the 

conventional data collection (as was the case in the study described in chapter 2). Neither a 

desirable averaging of steps, nor an estimation of step variance is possible that way.  

The purpose of this study was to compare the experimental conditions by using within 

subject step-variance in variables such as “peak moments” and “peak forces”, “times to peak”, 
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and “overall curve variability” as a factor for the ANOVA. Research hypothesis was that subtle 

alignment changes of the prosthetic ankle within the acceptable range of alignments have a 

greater effect on step variance when the subject is walking at a “strong” level of physical 

exertion as opposed to a low level of physical exertion. Furthermore, it was hypothesized that 

those effects would increase linearly with the exertion. 

4.2 Methods 

Ten subjects (demographic and anthropometric data are listed in table 1 in the introduction 

chapter), wearing their respective original prostheses, modified by the temporary installation of 

an iPecs mobile gait lab (College Park Industries, Fraser, MI) performed walking trials under four 

different experimental conditions: 1) low exertion, normal alignment (PRE/NORM), 2) Low 

exertion, two degrees increased ankle plantar-flexion (PRE/PF), 3) “Strong” exertion, normal 

alignment (POST/NORM), and 4) “Strong” exertion, two degrees increased ankle plantar-flexion 

(POST/PF). IPecs data of internal tri-axial prosthesis forces and moments were recorded at a 

sampling rate of 250 Hz continuously during the data collection sessions, and wirelessly 

transmitted to a laptop computer, thus making a multitude of step cycles available for statistical 

evaluation. Subjects were walking for a minimum of 10 steps in the conditions that included 

alignment perturbation of the prosthesis (once rested, once with “strong” exertion), and for 

even more steps on their originally aligned prosthesis (starting with low exertion, and until a 

level of “strong” exertion was reached). Walking speeds were self-selected on a looped path 

that included uneven surfaces, slopes and stairs. For evaluation purposes, samples of 10 level-

ground-steps per subject and condition were extracted and processed.  

In a first post-processing step, step duration was measured, based on the sample count 

between heel contact events. Then step lengths were normalized to 100 samples per step cycle. 

Vertical force and ankle moments were averaged across all 10 sampled steps for every 
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percentile of the step duration and were plotted. Standard deviations between steps were 

computed in the same manner. Eventually, measuring variables such as ankle flexion moment 

maxima and minima, time of maxima, longitudinal force maximum, and time of maximum were 

extracted from the curves and used for repeated measures ANOVA of the four experimental 

conditions.  

The so computed within group variance was applied into the equation for the F-statistic (F= 

between-group variability/within-group variability), in an attempt to estimate the significance of 

the previously observed RMS deviations in gait analysis graphs of different experimental 

interventions. Respective computations were conducted using the algorithm for Multivariate 

ANOVA in PAWS. For that, values at every percentile of the step cycle were treated as a 

separate variable, in an extension of the previously applied concept of extracting discrete point 

data from curve peaks only. In post-hoc tests, multivariate differences between groups were 

computed as well. As MANOVA does not account for repeated measures, six such group pairings 

had to be evaluated for every subject. No adjustment for multiple comparisons was applied. 

Figure 19 illustrates the data extraction and statistical methods applied. 

The averages and standard deviations of force and ankle moment measures over 10 time-

normalized steps were regarded for every subject separately for the computation of F-statistics. 

A sample is illustrated in figures 20 and 21, where ankle flexion moment curves for subject 6 are 

displayed for all four experimental conditions.  
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Figure 18: Illustration of statistical analyses conducted for this study. 
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4.3 Results 

Data from eight subjects were included in the analysis. Subjects 4 and 5 as bilateral amputees 

could not be properly categorized with respect to the prosthetic alignment intervention, and 

were excluded.   

Computed effect sizes and p-values for the selected variables over the four experimental 

conditions, as resulting from the RMANOVA are listed in table 11. 

 

Figure 19: Graphical representation of ankle flexion moments in one subject. 10 steps of each condition 

have been time normalized to compute averages and standard deviations at every point in time. The 

solid line in any one curve represents the average, and the lighter area above and below the standard 

deviation. NORM stands for normal alignment, PF for increased plantar-flexion. PRE denotes the low 

exertion level, POST the strong exertion level 
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Figure 20: Superposition of the ankle moment curves from figure 20. 
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Table 11: Effects of exertion and increased plantar flexion on amputee gait parameters based on integrated sensor data. (*) denotes significance at the .05 

level. Moments and forces are normalized to body weight. 

 Variable 

p-value p
2 

Increased 

exertion 

Increased 

plantar flexion 

Increased exertion 

& plantar flexion 

Increased 

exertion 

Increased 

plantar flexion 

Increased exertion 

& plantar flexion 

Minimal Mankle (=plantar-

flexion moment) (Nm/N) 
0.402 0.340 0.682 0.102 0.130 0.025 

% time of min Mankle 0.307 0.008* 0.088 0.148 0.655 0.360 

Stdev. of min Mankle (Nm/N) 0.887 0.208 0.312 0.003 0.216 0.145 

Maximal Mankle   (= dorsi-

flexion moment) (Nm/N) 
0.703 0.126 0.273 0.022 0.301 0.168 

% time of max Mankle 1.000 <.001* 0.026* 0.000 0.851 0.529 

Stdev. of max Mankle (Nm/N) 0.449 0.164 0.083 0.084 0.257 0.368 

Maximal longitudinal shin 

force Fz (N/N) 
0.431 0.393 0.135 0.091 0.106 0.290 

% time of max Fz 0.061 0.002* 0.028* 0.415 0.765 0.523 

Stdev. of max Fz (N/N) 0.511 0.447 0.350 0.064 0.085 0.125 

 

 

 

 6
7 
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F-statistics were computed for every subject separately. With respect to the variable ankle 

flexion moment, only one, subject 6, had statistically significant differences between 

experimental conditions, F(108,3.9)=8.462, p=0.026. In the longitudinal shin force several 

subjects had significant differences across conditions: Subject 6 (F(108,3.9)=51.010, p=0.001), 

subject 7 (F(108,3.9)=5.904, p=0.049), and subject 8 (F(108,3.9)=10.852, p=0.017). Pairwise post-

hoc comparisons showed that the main differences were in two cases between the conditions 

PRE/PF and POST/PF (subject 6 and 8), and in one case between PRE/NORM and POST/NORM 

(subject 7). The respective plots in figures 22-25 show the nature of the differences. 

 

Figure 21: Ankle moment comparison in subject 6. Averages of 10 steps with the misaligned prosthesis 

are plotted, once before the exertion protocol, and once after. 



www.manaraa.com

69 
 

 

 

Figure 22: Longitudinal shin force in subject 6, compared between conditions PRE/PF and POST/PF. 10 

steps each were normalized to 100 samples and averaged. 

 

Figure 23: Longitudinal shin force in subject 7, compared between conditions PRE/PF and POST/PF. 10 

steps each were normalized to 100 samples and averaged. 
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Figure 24: Longitudinal shin force in subject 8, compared between conditions PRE/PF and POST/PF. 10 

steps each were normalized to 100 samples and averaged. 

A similar comparison of gait curves was conducted with normal alignment and gradually 

increasing exertion. Figures 26 and 27 visualize the respective differences in one subject by 

displaying the curves for average ankle moment and longitudinal force during four points in time 

during the data collection. “Start” denotes the initial walking trial; this and the subsequent 

measures “after 1 lap, 2 laps, 3 laps” are separated by approximately 3 minutes and 210 meters 

walking distance each. 

A multivariate comparison over conditions revealed no significant differences for the ankle 

moment curves, but a difference in longitudinal force curves (F(108, 3.9)=28.678, p<0.001). 

Subsequent group-wise comparisons showed significant differences to have occurred only 

between conditions “start” and “after 1 lap” (F(18,1)=726.587, p=0.029). Comparison between 

other measurement points in time yielded no significant differences at the 0.05 level. 
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Figure 25: Comparison of longitudinal shin force over the step cycle at different levels of exertion for 

one subject (Subject 10). Curves are each averaged over samples of 10 consecutive time normalized 

steps. 

 

 

Figure 26: Comparison of ankle flexion moments over the step cycle at different levels of exertion for 

one subject (Subject 10). Curves are each averaged over samples of 10 consecutive time normalized 

steps. 
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Regarding the subjects whose gait was found to show significant effects of exertion, it was 

investigated whether the actual level of exertion was a factor in that. Subject 6 happens to be 

the subject with the highest relative gap between PRE exertion heart rate (60) and POST 

exertion heart rate (130). Subjects 7 (75 vs. 134) and 8 (85 vs. 138) had above average increases 

in heart rate as well. However, neither in subject 2 (65 vs. 139), nor in subject 9 (84 vs. 162) 

could significant effects be detected, although their heart rate increased above average 

between PRE and POST condition. A visualization of the possible correlation is given in figure 28. 

Findings were not conclusive, as the correlation coefficient R2 of about 0.3 is relatively small, 

and even assumed a value of 0 when one outlier was removed from the equation. 

 

Figure 27: MANOVA effect sizes of exertion in the condition PF (increased plantar-flexion). The variable 

"absolute increase in heart rate" shows a weak linear correlation to the effect size of exertion on ankle 

moment (R
2
 = .3156) 
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4.4 Discussion 

Multivariate comparison of ipecs variables revealed significant effects of both the increased 

plantar-flexion and the interaction of increased exertion and increased plantar-flexion, affecting 

the timing of peaks in the force curves and moment curves of a step cycle. Those findings 

indicate that there are measureable effects of subtle alignment perturbation even within the 

acceptable range of alignments for each subject. That challenges the belief that no differences 

in alignment quality exist within this range.  

Within-subject comparisons showed significant effects of the interventions for three of the 

subjects, but not for the others. A post-hoc correlation of absolute increases in heart rate during 

the exertion protocol and observed effect sizes of exertion suggested that those factors are 

proportionally related by trend. While this in itself would be an expected correlation, it shows 

the divergence in self-assessment of exertion levels among the subjects of this study, and again 

the generally limited comparability of individuals with amputation. 

In the three cases, significant differences could be found for one pairwise comparison out of 

six in each case. As this may indicate individually differences in strategies, employed by those 

subjects to cope with the respective interventions, it supports the finding that a great 

homogeneity in biomechanics of amputee gait cannot be assumed. The observed individual 

differences in step-by-step variability change across interventions can be interpreted in the 

same sense.  

It was shown, that the utilized data collection method by prosthesis integrated sensor is 

appropriate to detect individual gait changes. By increasing the step sample size, this method 

also improves measurement accuracy and facilitates statistical analyses even of small sample 

size studies. 
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The selected approach of comparing gait curves over 100 data points across conditions is an 

extension of the widely used method to quantify variability in gait, based on extracted discrete 

values, such as peak moments or timing of peaks. It was deemed sufficient for the purposes of 

this study, but may be extended upon in future analyzes. Possible evaluation methods could 

include such simple procedures as measuring the standard deviation of step parameters as a 

variable (Brach, Perera, Studenski, & Newman, 2008), calculating the coefficient of variation 

(Sosnoff, Sandroff, & Motl, 2012; Svoboda, Janura, Cabell, & Elfmark, 2012), or deriving the 

Minimal Detectable Change (MDC) for those gait variables (Kesar, Binder-Macleod, Hicks, & 

Reisman, 2011). More elaborate is the application of principal component analysis (Deluzio & 

Astephen, 2007), that has been “characterized by the assumption that a few dominant forms of 

variation can characterize most sets of data.” (Wrigley, Albert, Deluzio, & Stevenson, 2006), and 

has been used for investigations in sports biomechanics (O'Connor & Bottum, 2009), gait 

changes after diseases (Yamamoto et al., 1983) and recently also for amputee gait studies (Kark, 

Vickers, McIntosh, & Simmons, 2012).  In another effort to adapt mathematical approaches for 

amputee research, computation of the largest Lyapunov exponent (LyE) has been proposed, 

“which, in simple words, is a measure of how fast the waveform shape of a time series changes 

from step cycle to step cycle.” (Federolf, Tecante, & Nigg, 2012). This method has also been 

used “for analyzing the temporal structure of variability in amputee gait” (Wurdeman, Myers, 

Jacobsen, & Stergiou, 2012). However, this method can be criticized for the fact that, in order 

for it to yield reliable results, the collected data have to meet high requirements regarding the 

resolution, “a conservative rule of thumb [suggesting] a minimum of 8 meaningful bits of 

precision be used for exponent calculations.”(Wolf, Swift, Swinney, & Vastano, 1985). 

Realistically, such a resolution is not attainable without introducing systematic measurement 

errors, especially in gait analysis applications. 
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Irrespective of the eventually applied method for quantifying gait variability, the approach of 

considering within-step variability for the statistical evaluation of within-test variability appears 

to be an interesting option that is supported by the mobile sensor technology. Although this 

study could not find any significant differences in step variability between interventions, the 

computed effect sizes (table 11) indicate that the variable “step variability” is indeed affected by 

changes in alignment and exertion. A within-subject comparison of the variable “step variability” 

(figure 28) reveals again substantial individual differences in how this variable is affected by the 

interventions. In some subjects (e.g. subject 1 or 6), the step variability decreased over time, 

possibly hinting at an increased level of gait stability. In other subjects (3 or 7), this trend 

seemed reversed, again others (2 or 10) did not show any linear trends of step variability 

changes in response to the interventions. 

More significant have been the findings of analyses of changes within the same subject. 

Between-group variability in gait variables (that is, across different interventions), as well as 

within-group variability (that is, across a sample of consecutive walking steps) can be calculated 

within a single subject. This allows statistical comparisons by means of F-statistics, such as in the 

here-utilized MANOVA procedure, without requiring a large patient cohort. In fact, the results of 

our respective analyses support the argumentation that the effects of prosthesis interventions 

can rarely be meaningfully compared across different amputees. Three of our subjects had a 

significant change in the shape of the longitudinal force curve over the step cycle, when 

subjected to our different experimental interventions; the others did not. A likely explanation 

for the lack of significance in the latter cases is that step variability in those subjects was 

generally on a relatively high level, so that the variability that was caused by the actual 

interventions could not be detected. Two conclusions could be drawn from that: firstly, the 

sample size could be increased in future studies – something that seems easy enough to do by 
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simply collecting data over 100 instead of 10 consecutive walking steps; and secondly, the 

sample size that has been available from the conventional gait analysis is too small for 

meaningful comparisons within the trans-tibial amputee population. 

Limitations: Comparing ankle moment and force curves over normalized step cycles by 

means of a multivariate ANOVA is not without limitations.  

1) Based on previously discussed findings, caution is required in interpreting variables that 

inherently rely on proper time measurement, as the integrated sensor appears to have 

sizeable fluctuations in its clock rate. Although, it may be the case that those random 

effects are averaged out over our sample of 10 subjects, the results lack a desirable level 

of confidence. 

2)  When interpreting the results, it must be considered that the detected differences refer 

to the magnitude of the respective value at a given gait cycle percentile. In that sense, a 

higher or lower peak force in one of the conditions could yield the same results, as 

would a delayed peak force of unchanged magnitude. An error in properly defining the 

time of stance phase initiation can therefore skew the entire analysis. This possible error 

has been mitigated by the fact that 10 steps per sample were averaged, as was the case 

in this analysis.  

3) Likewise unexpected results yielded the analysis of vertical force curves measured at 

different times during the exertion protocol (figures 26 and 27). MANOVA indicated that 

only the first and second measurement (solid and dotted curves) were significantly 

different, whereas the last measurement (dashed) was not found to be significantly 

different from any other curve, which contradicts the notion from visual assessment 

that this curve has the biggest deviation from the respective others. This raises the 
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question whether the selected analysis method is appropriate to detect interesting 

differences. A principal component analysis is recommended for future studies of that 

data. 

4.5 Conclusion 

This study expanded on the results of our initial comparison of the effects of prosthesis 

alignment and physical exertion on amputee gait, that have been based on conventional gait 

analysis data, and yielded no significant difference (in gait symmetry), by investigating unilateral 

gait variables. Analysis of prosthesis ankle moments and longitudinal shin measured by ipecs 

equipment detected gait changes across interventions that – unlike the results from CGA – were 

statistically significant in some parameters. The measurement method was also used to analyze 

within subject step-by-step variability, and on this basis evaluate individual responses to 

alignment changes and exertion. In the clinical application, this capability should be a relevant 

one, as it may be used to evaluate and optimize prosthetic fittings on a single case basis. 

Possible applications of this technology include studies on amputee gait kinetics in different 

real life conditions, such as on stairs and inclines, over prolonged periods of walking, with 

different alignments, and prosthetic components. The specific capabilities of the integrated 

sensors also allow investigating leg laterality in bilateral amputees, gait stability in amputee gait, 

and long term outcomes of prosthetic use. Some of those questions have been discussed in a 

series of abstracts that were based on preliminary data of this study,  (Fiedler & Slavens, 2011; 

Fiedler, Slavens, Briggs, & Fedel, 2012; Fiedler, Slavens, & Smith, 2012a, 2012b, 2012c), and that 

are attached in Appendix D. 
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5 Overall Summary and Conclusions  

This research confirmed previously stated notions that prosthesis fitting and alignment follows 

individually different mechanisms, which makes it difficult to find generally applicable principles. 

Investigating differences in gait symmetry based on conventional motion analysis did not yield 

many significant results. Aside from the small effect size of the tested interventions, the 

inconsistency of effects across the ten subjects of the sample population was identified as a 

limitation of this approach. For some subjects, interventions had the opposite effect than for 

others. While this obviously reduces the statistical significance of group-wise effect sizes, it may 

obscure possible considerable effects for individual subjects.  

This problem can be addressed by using within-subject variability for the statistical 

comparison of conditions. With that objective, the usability and validity of an integrated sensor 

module was tested. Although the quantity of accurately measurable variables is somewhat 

limited in comparison to CGA, it was found that the used sensor provides reliable patient 

specific data on ankle moments and forces. 

Step parameters measured by prosthesis integrated sensors were compared across 

interventions, factoring in the step variability within trials for the computation of F-statistics in a 

SS design. According to the results, several of the tested subjects experienced significant effects 

from the interventions, which were differently among the sample. 

5.1 Notes on protocol and data collection issues 

While testing the study hypotheses, several unanticipated aspects presented themselves that 

are worth mentioning, as they may motivate future studies and inform their respective study 

design.  
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Measuring exertion, muscle activity, and step timing parameters proved to be challenging 

with the utilized protocol and equipment. It is recommended to apply a more accurate method 

of assessing physical exertion than the here used self-report scale. In the sense of limiting 

recovery effects, it would also be worthwhile to devise a system that makes alignment changes 

quicker, or even entirely unobtrusive, for instance by using active ankle adapters (Eilenberg, 

Geyer, & Herr, 2010; Fradet, Alimusaj, Braatz, & Wolf, 2010). By being able to change the ankle 

alignment for instance by remote control or by a randomized protocol during the walking trials, 

the probability could be reduced that results are affected by timing, training, and expectation 

effects. 

Muscle activity was hypothesized to change significantly across testing conditions, yet a 

measuring accuracy that would allow the respective analyses could not be realized. Despite the 

technical advantages of the used wireless EMG sensor system, including the capability of 

transmitting signals directly to the base unit, and the correction for motion artifacts by 

integrated accelerometers, it seems recommendable to use different equipment instead. Mainly 

the size and the attachment mode of the wireless sensor units presented problems when using 

them in our population. Placing them under the elastic liner sleeve or the knee brace was 

problematic due to the discomfort to the patient, as well as a loss in adhesion between skin and 

sleeve. Placing them proximal of the upper sleeve end caused the EMG signal to be weak and 

noisy, aside from issues with properly keeping the sensors in place over the length of the trials. 

A patient-worn EMG monitor that is connected to thin sensors by wires, but transmits data 

wirelessly to the computer (GreatLakesNeurotechnologies, 2011) would be a better option in 

this population. 

Future work is required to address the sampling frequency inconsistencies in the iPecs sensor 

in order to achieve more reliable measures on timing based gait parameters. Assuming that the 
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observed issue is not a general one, it is recommended to verify the sampling frequency prior to 

testing, and if necessary replace the faulty unit.  In the case that the frequency deviations are 

caused by the wireless transmission procedure, a feasible remedy might be the adaptation of 

the protocol to include data collection in the on-unit memory storage instead of the wireless 

transmission. 

5.2 Discussion on the applicability of integrated sensor measurements  

Although it did not succeed in this study to identify many gait variables, that are dependent on 

subtle prosthetic alignment changes, clearly measurable and generally applicable to a wide 

population, the applied method may hold the potential of addressing the common problems in 

amputee studies, namely a small sample size, and high within-subjects variability. If it is 

accepted that many alignment interventions have individually different effects on the gait 

biomechanics in (trans-tibial) amputees, it becomes very reasonable to conduct SS studies, e.g. 

to consider studies with sample sizes greater than one as a series of case studies.  

Particularly with respect to studies on gait pattern, gait symmetry, and gait variability, the 

dependent variables can often be extracted from a small step sample. Depending on the 

number of available force plates in CGA, this sample may be as small as one step cycle (as was 

the case in our here discussed study). Comparing this one step across different experimental 

conditions or interventions is obviously limited in its statistical significance. The desirable 

increase in step samples would necessitate a greater number of captured repetitions, which is 

not only time consuming, but may also bear problems regarding the clear definition of the 

intervention condition. Multiple repetitions of walking trials in a gait lab can have several 

undesired and difficult to quantify side effects on the subject, such as a warm-up or training 

effect, or eventually a fatigue effect. This would limit the validity of the assumption that all 

sampled steps are part of the same group.  
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If for instance, one were to investigate the effect of physical therapy on the gait symmetry in 

amputees, the two intervention groups would likely be “Before PT” and “After PT”.  In order to 

collect a reasonable sample of for instance 10 steps in the “Before PT” condition, the subject 

would have to be asked to complete repeated walking trials until those 10 steps, meaning 10 

clean strikes of the force plate with the interesting leg, have been recorded. For every step on 

the force plate, there may be 10 more per trial occurring before and after the force plate. 

Depending on the step length and gait variability of the subject, the total number of repetitions 

may become much larger than 10, if the subjects fails to cleanly strike the force plate. It is a 

conservative estimate that only 20% of trials in amputee gait studies can be used for data 

extraction. Stochastic deliberations suggest that even of non-impaired subjects “only about 25% 

… will, on average require 3 or less trials for every successful test …, only 43% will require 5 or 

less …, and almost 42% will not be able to have valid trials at all.” (Oggero, Pagnacco, Morr, 

Simon, & Berme, 1997). In our case, an average subject would have to perform about 50 

repetitions of 10 steps each in order to provide a sample of 10 steps. Those up to 500 steps of 

walking between the first and the final sample step could be compared to a session of physical 

therapy already, so that it would be misleading to categorize both step samples in the same 

group “Before PT”. In fact, the first step may be “Before PT” whereas the last one should be 

labeled as “After 1 PT session”. 

Another limitation of the CGA in this context is the impossibility of analyzing consecutive 

steps. Such an analysis reveals interesting information, such as the within-steps variability 

(Hausdorff, 2007; Maki, 1997) that can be interpreted as a measure of gait stability. One 

approach of obtaining respective data is the use of instrumented treadmills (Bagesteiro, Gould, 

& Ewins, 2011; Draper, 2000) or wearable sensors (Aminian, Najafi, Büla, Leyvraz, & Robert, 

2002; Nolan et al., 2003). Both techniques have their own limitations, mainly in the 
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comparability of treadmill gait with solid ground gait (Alton, Baldey, Caplan, & Morrissey, 1998; 

Zeni Jr. & Higginson, 2010), and in the susceptibility to measurement errors caused by motion 

artifacts and sensor displacement (Leardini, Chiari, Della Croce, & Cappozzo, 2005; Reinschmidt 

et al., 1997). 

By installing the sensor in the prosthesis structure, much of those systematic shortcomings 

can be addressed. The integrated sensor measures step data continuously – a sample of 10 

steps can be collected while the subject is walking 10 steps. In order to compare the previously 

mentioned conditions “Before and After PT”, essentially only 10 steps of gait on either side of 

the PT session need to be recorded, which can be done in a matter of seconds. For the statistical 

comparison, for instance by student’s t-test, a simple F-statistic can be computed based on the 

variability within the groups and between the groups respectively. The results would have to be 

interpreted as only valid for this particular subject, which is an inherent limitation of single-case 

studies. Nonetheless, the relatively low technical complexity and time intensity of this data 

collection and analysis could make it an interesting outcome assessment method in the clinic.  

The quality of gait data delivered by the iPecs device is in some respects different from CGA 

standards. Where this affects the comparability and meaningful interpretation, as discussed in 

chapter 3, these differences are clearly a drawback and they limited the feasibility of our initially 

intended investigations. On the other hand, it may be worthwhile to consider the specific 

capabilities of this technology to utilize them for the investigation of slightly different questions. 

Mobile sensors do not necessary measure quantities that would else be unattainable, but they 

may do so more directly, and less error-prone (for instance in the light of marker motion 

artifacts, and the inevitable approximations concerning segment masses and centers of gravity 

in CGA). Three examples may illustrate this. 



www.manaraa.com

83 
 

 

1) Being within the structure of the prosthesis, the force cell of the mobile sensor detects 

forces over the entire spectrum of the gait cycle, which cannot be said for force plate based 

kinetics analysis methods. Especially in the swing phase, it so becomes possible to quantify the 

forces that work on the prosthesis, and eventually on the residual limb. In the light of the 

perennial debates about socket suspension systems (Hagberg & Brånemark, 2009; Klute et al., 

2011; Narita, Yokogushi, Shii, Kakizawa, & Nosaka, 1997) and energy returning foot components 

(Gitter, Czerniecki, & DeGroot, 1991; BJ Hafner, Sanders, Czerniecki, & Fergason, 2002; Postema, 

Hermens, de Vries, Koopman, & Eisma, 1997; Versluys et al., 2009), this particular information 

may help shed some light on the respective relationships and correlations. For example, it has 

been claimed that the comparably high weight of novel powered ankle systems, capable of 

active plantar-flexion at the initiation of the swing phase, has none of the negative effects 

usually associated with higher prosthesis weight (HM Herr & Grabowski, 2012). Measuring the 

longitudinal force component in the prosthesis pylon could be one easy way to investigate that 

claim. 

2) Another consequence of collecting kinetics data during the swing phase is the 

availability of directly measured internal prosthesis moments. As already discussed in chapter 3, 

this internal moment in the stance phase resembles much the ankle moment that can be 

measured by CGA. Given the changed nature of the observed system in the swing phase (from a 

closed kinematic chain to an open chain), it could be reasoned that the then measured internal 

moment is closer related to the moment in the proximal joint, which would be the knee in trans-

tibial amputees. Measuring internal knee moments in the swing phase of amputee gait directly, 

other than deriving it from the computed external moments, would possibly hold some 

interesting information in the context of questions on muscle utilization, prosthesis weight 

balance, and socket efficiency. 
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3) Finally, the fact that forces and moments are directly available in a local coordinate 

system that moves with the prosthesis may ease some of the analyses that are directed at 

investigating socket forces or internal moments of the residual limb. Those quantities have their 

probably most relevant effects on the residual limb itself, and would therefore best be 

described in a reference frame that is established right in that system. 

5.3 Possible future directions  

It is a perennial issue in prosthetics how to properly prescribe (and bill for) prosthetic 

components; and with every new piece of available technology it has to be determined whether 

or not it is worth its price tag, and for whom its use is indicated. Manufacturers and prosthetists 

have naturally a different bias on that question than have insurances and other payers, which 

regularly causes disagreement.  An individual assessment of the new part’s effect on gait 

biomechanics could help decide this debate on a case-by-case basis. 

This work (in chapter 4) discussed one application of that concept in investigating the 

hypothesis that exertion and subtle alignment changes have an effect on amputee gait kinetics. 

In future studies, this approach could be extended in several ways.  

1) More variables could be compared. Although it was determined, that the proximal 

moment computed by the iPecs has no useful equivalent in CGA, there are still various valid 

variables that may hold interesting information on amputee gait kinetics. For the analysis in 

chapter 4, only ankle flexion moment and longitudinal internal force were considered, because 

those variables are most commonly discussed in the literature, and are also most likely to be 

affected by the particular interventions of this study. Yet, those quantities are available in three 

degrees of freedom, and in a different study it may be indicated to include ankle pronation 

moment, ankle rotation moment, transversal force, and shin torsion force in the analysis. 
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2) More steps could be regarded. Increasing the step sample size requires close to no 

additional time and effort, as merely an additional few seconds of walking need to be included 

in the data set. This can help achieve the desired statistical power and detect small effect sizes 

in comparison studies. 

3) More interventions could be compared. Beyond the question of how exertion and 

increased ankle plantar-flexion affects amputee gait, it may also be of interest what effect, if 

any, different walking surfaces, environmental conditions, prosthetic components, or e.g. shoe 

designs have in this context. Data on some of those possible interventions have in fact already 

been collected as a byproduct of the exertion protocol in this study. When subjects walked 

along the looped path along the hallways, down and up the stairs, through dimly lit corridors, 

and across the outdoor parking lot, the iPecs sensor was continuously collecting data. Those 

may well be the preliminary data for a respectively proposed study. 

4) More amputation levels could be included. Trans-tibial amputation is the most 

prevalent among several common leg amputations. Gait biomechanics with a trans-femoral 

prosthesis are obviously subject to different constrains and prosthetic interventions, but could 

be investigated in a similar fashion as in trans-tibial prosthetics by integrated sensors. A 

comparable case of including a different sub-population of amputees would be the study of 

bilateral amputee gait mechanics. The data of the actual study already yielded one such abstract 

that can be found in the appendix. 

5) Step-by-step variability, derived for instance from the standard deviation of gait 

parameters over the step cycle, may be used as a dependent variable to compare interventions. 

Step variability is often discussed as an indicator for gait stability, and could therefore be an 

important outcome measure in amputee gait studies. Preliminary data is displayed in figure 29 

that shows step variability data that has been collected for the subject sample of this study. 
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Figure 28: Average standard deviations of vertical force Fz (in N) and ankle flexion moment Mankle (in 

Nm) curve points in a 10-step sample, as a measure of in step variability in each subject over the 

intervention conditions.  
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Beyond the adoption of the protocol for extended gait analysis studies, it is also conceivable 

to use the sensor technology in the sense of outcome assessment. With respect to practical 

significance, this kind of research is probably even more interesting than pure biomechanics 

observations. Assessment of patient activity may be more accurate if the sensor is installed in 

the prosthetic structure and not worn comparably loosely on the belt or strapped to the skin, as 

is common in accelerometry measures. Depending on the amount of relative displacement 

between residual limb and prosthesis, it may be feasible to reduce the noise artifacts to an 

extent that allows even the detection of gait events on the non-instrumented contralateral side. 

In any event, it is foreseeable that prosthesis integrated sensors become more versatile and 

accurate, smaller, lighter, and most of all more affordable in the coming years. Increasing 

complexity of prosthetic technology and the likewise increasing necessity to balance amputee’s 

entitlement to the best available treatment with an economically sound prescription practice 

may soon make the by-default equipment of artificial limbs with integrated activity monitors a 

standard practice. 
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6 Appendix A: Literature Review 

6.1 Introduction and State of the Arts 

6.1.1 Significance of prosthetics 

Limb loss is obviously a severe medical condition that has potentially life changing consequences 

for the respective patient. The literature on the topic offers divergent information on the exact 

prevalence of amputation. A study from 2002 (Dillingham et al., 2002) addressed the question 

by analyzing a large number of hospital discharge records, encompassing about 20% of the 

respective documents issued in the United States between the years of 1988 and 1996. 

According to this study, the average annual number of limb-loss-related hospital discharges is 

133,325 nationwide, and the corrected increase is approximately 3% every year. Corrected for 

population effects, the total number of amputations increased by 27% during the period of the 

study. As for the explanation, the authors refer to “[increased] prevalences of diabetes, 

smoking, hypertension, and hypercholesterolemia  [that may] be contributing to the increasing 

rates of dysvascular amputations.” (Dillingham et al., 2002) 

Epidemiology of Limb Loss and Congenital Limb Deficiency in a global scope was investigated 

later by an extensive literature review of the same research group (Ephraim, Dillingham, Sector, 

Pezzin, & MacKenzie, 2003). In the general category of lower limb amputations, incidence rates 

varied between 0.1/10,000 for Japanese women and 4.4/10,000 for male inhabitants of the 

Navajo region of the United States. On average, the incidence rate in the U.S. appears to be 

comparable to other countries, such as the United Kingdom, with 1.9/10,000 for men and 

1.3/10,000 for women. Amputation rates are by trend increasing, which is especially true for 

diabetes and vascular disease related causes. 

Those epidemiologic data allow for estimates of the total prevalence of amputations at a 

given time (Ziegler-Graham et al., 2008). “[Using] age-, sex-, and race-specific incidence rates for 



www.manaraa.com

110 
 

 

amputation combined with age-, sex-, and race-specific assumptions about mortality” the 

authors computed the estimated actual number of amputees living in the United States, as well 

as the predicted number for the years through 2050. Results of the study indicate that about 1.6 

million Americans are living with limb loss today (that is the year 2005), and that this number 

will reach 3.6 million by the year 2050 

Continuous research was conducted to answer the question, how well prostheses are 

perceived by their respective users (Pezzin et al., 2004). By means of structured telephone 

interviews, the authors collected data from 1538 persons with amputation of the lower or upper 

extremity.  Of the participants 94.5% had prosthesis and used it extensively. However, only 

75.7% were overall satisfied with their prosthesis, where the socket fit was least acceptable 

(75.5%) behind appearance (80.4%) and weight (77.1%). The level of content could be related to 

the time span that went by between surgery and the receiving of the first prosthesis, as “those 

who were fitted later in the rehabilitation process—most notably, those waiting more than 60 

days to first prosthesis fitting—were less likely to be satisfied with the prosthesis fit … and 

overall performance” (Pezzin et al., 2004). 

6.1.2 Prosthetics in historical and medical context  

Technological progress in prosthetics is a matter of several levels. The first area of intervention 

is the amputation surgery itself. Steady modification of the initially used amputation technique, 

in which the leg with a single Pitch of the surgical knife was cut to the bone, begun already in 

the 18th Century (Sachs, Bojunga, & Encke, 1999). At the beginning of the 20th Century, the first 

myoplastic techniques were applied, where the antagonistic muscle groups on the bone end 

were stitched together to improve soft tissue coverage, improved strength and agility of the 

stump. Following the amputation, it is the rehabilitation regimen that influences the physical 
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abilities of the amputee. (Esquenazi & DiGiacomo, 2001) summarize the measures that should 

be applied in order to avoid depression, joint contraction and post-surgical pain, while 

promoting wound healing, cardiovascular condition, muscle strength, and balance prior and 

during the early stages of prosthetic training.  

Beyond the amputation technique, the efficiency of a prosthetic leg fitting is a function of 

socket design and the prosthesis technology. In trans-tibial prosthetics, different socket designs 

have been successfully implemented, including the still popular Patellar Tendon Bearing (PTB), 

and the Total Surface Bearing (TSB) socket (Foort, 1965; Narita, Yokogushi, Ship, Kakizawa, & 

Nosaka, 1997). In the field of functional exo-prosthetic parts, such as knee joints, shock 

absorbers, rotational adapters, or feet, extended research and development has been done over 

the years (Gitter et al., 1991; B Hafner, Willingham, Buell, Allyn, & Smith, 2007; H Herr & 

Wilkenfeld, 2003; Michael, 1999; Radcliffe, 1994; van der Linde et al., 2004)(to name a few). 

However, those functional components are considered only a minor part of the overall 

prosthetic performance, as even the best hardware will not have a benefit for the user as long 

as the socket does not fit properly. Accordingly, the socket fit is considered the decisive factor 

(Legro et al., 1999; Miller & McCay, 2006). 

In a wider sense, this includes prosthetic alignment. Also a very important factor for the 

overall performance of the prosthesis, it is determined usually based on rather coarse and 

subjective gait evaluation data. Even more so than a poorly fitting socket, a flawed static 

alignment might be compensated by conscious or subconscious efforts sides the amputee 

during locomotion (Neal, Neptune, & Gitter, 2003). This further complicates the visual 

assessment, but may also suggest that there is a certain acceptable range of variability of 

prosthetic alignment. Respective studies came to the conclusion that a “prosthetist could not 

repeat a given alignment at will. In fact a number of alignments were acceptable to the patient 
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and prosthetist. Different prosthetists produced different ranges on any one patient, and these 

ranges varied on AP and ML views with different prosthetists” (Zahedi, 1986; Zahedi, Spence, 

Solomomidis, & Paul, 1987).  

6.1.3 Previous research on amputee gait 

With above annotations in mind, the following review is intended to illustrate the various 

aspects of amputee gait that have been addressed by researchers so far. Starting with the basic 

research that has helped understand the biomechanical characteristics of amputee locomotion, 

and the diverse gait analysis tools and methods that have been used to that end, our discussion 

will subsequently focus in on the issue of gait symmetry, as this is a critical variable in our 

proposed study. In the same sense, the emphasis of the review is put on trans-tibial prostheses. 

Their alignment poses a comparably straightforward challenge, as they come with fewer 

degrees of freedom than trans-femoral or other higher level leg prostheses, yet there are many 

questions still unanswered or at least debated in the literature. While introducing selected 

publications on the topic, it will be attempted to draw connections to the proposed work, 

whenever there is a relevant aspect to be considered in our context. Likewise, established data 

collection methods will be introduced towards the end of this chapter in order to support the 

study design that will be explained in detail within subchapter 6.2. 

6.1.4 Biomechanical specifics in trans-tibial prosthetics 

Investigating the gait biomechanics that are specific to below-knee-prosthesis walking, (Winter 

& Sienko, 1988) conducted a gait study with eight unilateral transtibial amputees, wearing 

prostheses with different foot components (SACH and Greissinger). Conventional motion 

capturing and force plate measurements were combined with surface electromyography of 

several residual leg muscles. Upon normalizing the obtained forces and moments to body mass, 

the respective curves were compared to baseline curves of a non-amputee population. The 
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authors came to the conclusion that amputees display a modified motor pattern in walking, 

although without being able to tell whether those modifications are optimal in the individual 

case.  

Generally, this paper has delivered the groundwork for many subsequent studies, and has 

been referenced extensively in the literature since. The used systematic segmentation and 

description of the amputee gait cycle has introduced a scientific approach to gait assessment, 

and has helped clarify the specific conditions during ambulation on an artificial limb. Although, 

the amount of collected data was considerable, as were the computed moments and forces, the 

study could not conclusively answer whether the observed differences of amputee subjects 

walking to the familiar pattern of normal gait are undesirable deviations from the ideal, or 

rather inevitable results of efficient adaptations to the specific situation of this condition. 

Trans-tibial amputee gait is by now very well understood in terms of typical joint force and 

moment curves (Cappozzo, 1984; Stauffer, Chao, & Brewster, 1977), on level ground, stairs and 

uneven surfaces (Torburn, Schweiger, Perry, & Powers, 1994; Vickers et al., 2008). Studies have 

been conducted investigating the influence of different socket designs and prosthesis 

components (Board, Street, & Caspers, 2001; Czerniecki, Gitter, & Munro, 1991; Taylor, Clark, 

Offord, & Baxter, 1996; Torburn, Perry, Ayyappa, & Shanfield, 1990), residual limb length, 

activity level, and diagnosis (Andrews, 1996; Davis, Kuznicki, Praveen, & Sferra, 2004; Sadeghi et 

al., 2001; Waters, Perry, Antonelli, & Hislop, 1976). The questions of gait efficiency, dynamic and 

safety have been scrutinized (Barth, Schumacher, & Thomas, 1992; Schmalz et al., 2002; Vanicek 

et al., 2009), and recommendations for surgery, rehabilitation therapy, and prosthetic 

prescription have been issued (Cortés, Viosca, Hoyos, Prat, & Sánchez-Lacuesta, 1997; 

Houghton, Taylor, Thurlow, Rootes, & McColl, 1992; Segal et al., 2006; Sjödahl, Jarnlo, & 
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Persson, 2001; Summers et al., 1988). Much of the research work in the field is still based to big 

parts or even entirely on motion analysis and force plate measurements.  

6.1.4.1 Reliability of gait assessment  

Given the popularity of force plate equipment among researchers, the reliability of such 

amputee gait assessment is an important factor to quantify. Studies on the “variability of the 

basic dynamic gait parameters of physically active persons with unilateral trans-tibial 

amputation” include one by Janura et al [69], where variability between subjects as well as 

within subjects was evaluated and compared.  Hereby it was found that the “inter-individual 

variability … is higher [than] the intraindividual variability”, and that “the coefficients of 

reliability … exceeded for measured parameters (time, force, force impulse) … the value 0.976” 

(Janura, Svoboda, & Elfmark, 2006). It was noted that those coefficients depended on individual 

given facts of the respective subjects. The study design suggests meaningful comparisons of 

sound leg and prosthesis based on the measured ground reaction forces. This is an interesting 

approach that supports the premise of inline assembly of force sensors for gait analysis 

purposes, as it was undertaken in this dissertation work. However, kinematic data and joint 

moments, which are relevant in gait analysis as well, have not been regarded or discussed in 

Janura’s article. Hence, it could be argued that the quantity of measured variables was not 

sufficient to justify generally applicable conclusions on amputee gait.  

6.1.4.2 Muscle force and muscle activity measurements 

Something that cannot be directly measured by kinetic gait analysis is the muscle activity that 

facilitates the walking pattern. Due to the severely changed structure of the affected limb after 

an amputation, the effective muscle strength is likely reduced when compared to the sound 

limb.  (Nadollek et al., 2002) published a respective study that was investigating this hypothesis. 
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23 unilateral trans-tibial amputee participated in the data collection by standing “on two 

adjacent forceplates whilst the weight distribution and standard deviation (SD) of the … centre 

of pressure excursion (COPE) under each limb was recorded…”A simple gait analysis was 

conducted as well, to obtain correlation variables. Despite some bilateral differences in CPOE, 

no “differences in muscle strength or gait measures between limbs were demonstrated. 

However, strong hip abductor muscles were correlated with increased weight-bearing on the 

amputated limb, improved gait parameters and reduced medio-lateral COPE under the 

amputated limb” (Nadollek et al., 2002). In conclusion, it was recommended to strengthen the 

hip abductor muscles by appropriate training efforts. 

After Winter & Sienko already had included electromyography measurements in their studies 

of amputee gait, this method has been a mainstay of related research. EMG captures the 

electrical potential changes on the skin surface that occur as a result of the activation of the 

underlying muscles. Muscle force is a function of the muscle dimensions (physiologic cross-

sectional area) and the frequency in which electrical stimuli (action potentials) are applied (the 

phenomenon of muscle fatigue factors in as well, but will be discussed at a later point). Since 

muscle composition and dimensions are usually constant over time, the obtained EMG signals 

can be closely correlated with the actual muscle force. (Bolgla & Uhl, 2007) published the results 

of a study that “was to determine the reliability of three normalization methods for analyzing 

hip abductor activation during rehabilitation exercises.” A more recent study (Murley, Menz, 

Landorf, & Bird, 2010) was investigating the reliability of EMG measurements with respect to 

successive data collection sessions, which was also related to the used normalization technique. 

While the results somewhat contradict the Bolgla study above, the information that time-of-

peak amplitude is the most reliable evaluation parameter in walking trials stands uncontested 

and can be used for respective experiments, such as the here proposed one. 
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The issue of noise filtering was addressed in an article by (De Luca, Gilmore, Kuznetsov, & 

Roy, 2010), who had noted that typical recommendations for filter bandwidths are often based 

merely on literature reviews rather than empirical studies. The findings “indicate that the 10 Hz 

filter does not fully remove the artifact; and the 30 Hz filter, while successfully attenuating the 

artifact, also removes a portion of the lower frequency components of the sEMG signal” (De 

Luca et al., 2010).  In conclusion, there is no optimal cutoff frequency for general EMG 

measurements. Instead the selected bandwidth of the filter is a compromise that “may be 

determined by considering the percentage of movement artifact and the percentage of EMG 

signal loss as a function of frequency increment”. For instance, when measuring “muscle groups 

which have lower frequency distribution than those tested in this study, such as the … 

quadriceps muscles … a 20 Hz corner frequency is still appropriate” according to the authors. 

6.1.4.3 EMG methodology and findings in TT amputees 

EMG characteristics of amputee walking were investigated by (Isakov, Keren, & Benjuya, 2000), 

who analyzed “14 traumatic TT amputees, walking at a mean speed of 74.96 m/min...” placing 

“Surface electrodes … over the quadriceps (vastus medialis-VM) and hamstrings (biceps femoris-

BF) of both the amputated and non-amputated thighs”. Among the results was the finding that 

the “biceps femoris/vastus medialis ratio in the amputated leg, during the first half of stance 

phase, was significantly higher when compared to the same muscle ratio in the sound leg. This 

difference was due to the higher activity of the biceps femoris, almost four times higher than 

the vastus medialis in the amputated leg.” The authors discuss the implied gait asymmetry 

which agrees with findings of previous studies, and may be explained with the above normal 

knee flexor moment in trans-tibial amputee walking due to the rigid ankle and the static 

alignment of the socket with respect to the foot. Strength training has been proposed to 

increase the symmetry of walking, as well as the development of advanced prosthetic 
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components. Beyond that, the method suggests itself for the investigation of alignment 

perturbations, and is thus relevant for our study design. 

More recently, (Fey et al., 2010) compared EMG activity between sound and residual limb in 

amputee walking, with the objective to “identify changes in muscle activity in below-knee 

amputees in response to increasing steady-state walking speeds.” Generally, they concluded, 

that “[most] amputee EMG patterns were similar between legs and increased in magnitude with 

speed. Differences occurred in the residual leg biceps femoris long head, vastus lateralis and 

rectus femoris, which increased in magnitude during braking compared to the intact leg.” On the 

question of compensatory activity in sound legs of amputees, only the gluteus medius at a 

higher walking speed had a different pattern in amputees. Overall, the results can be 

interpreted that a comparison across subjects will not necessarily be helpful in identifying 

compensatory mechanisms, as those – if they occur at all – are not represented by typical EMG 

signals for isolated muscles. 

6.1.4.4 Computer modeling of alignment changes 

(Fang, Jia, & Wang, 2007) noted the insufficiency of moment and force calculations from motion 

analysis data and EMG measurements, thus making the case for a computer model to predict 

changes in muscle forces in response to alignment adjustments of the prostheses: ”The 

musculoskeletal modeling proves to be useful in a wide field of human biomechanics, and is 

mostly used to be predicting muscle forces, ligaments and articular loading ...”. Based on typical 

segment dimensions and masses that have been reported in the literature, a two dimensional 

model of the amputated leg together with the prosthesis was developed. Seven independent 

muscle groups were included, and the prosthesis socket was assumed “to attach to the stump 

firmly without any slippage or rotation”. The known characteristics and contraction statuses of 
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the muscles were inserted in a static optimization algorithm that had the objective to minimize 

total muscle fatigue as the performance criterion. With the several muscles involved, this 

optimum would be a combination of different fatigue levels in response to simulated prosthesis 

alignment changes. Also, the solution is time variant and was hence computed over 100 time 

points during the step cycle. 

In conclusion, it was found that the temporal distribution of predicted muscle forces remains 

widely unaffected by alignment perturbations. However, peak forces were shown to be 

significantly affected by the described alignment changes.  

(R. J. Zmitrewicz, Neptune, & Sasaki, 2007) used a musculoskeletal model to investigate the 

question of energy contribution from individual muscles. A standard SIMM leg model was 

modified to include the artificial foot, which was chosen to be an “Energy Storage And Return” 

(ESAR) foot type. The results of this theoretical study indicated that with such feet a symmetrical 

gait pattern can be achieved, albeit not without compensatory work by both the residual and 

the contra-lateral intact leg. 

A criticism of this study approach could be that no slip or similar interaction between 

prosthesis and residual limb was factored in. Against the background of the considerable extent 

of those relative motions, as has been shown in various studies on stump-socket interaction 

(Balogh, 2008; Papaioannou, Mitrogiannis, Nianios, & Fiedler, 2010; Street, 2006),  it remains 

questionable whether a model as the described one is sufficiently representing real life 

conditions. In conclusion, there is a legit demand for actual intervention studies to determine 

the effects of prosthesis settings on walking.  
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6.1.4.5 Measuring muscle dimensions 

An indirect method to determine muscle force was applied by (Schmalz, Blumentritt, & Reimers, 

2001), who investigated the atrophy of residual leg muscles and nerves in amputees by ultra-

sonography. Muscle thickness and cross sectional area were then compared between 

amputated and unaffected leg. Differences were significant for five of the eight examined 

muscles, especially the rectus femoris and sartorius muscles that were reduced in thickness and 

cross sectional area.  

While following a convincing premise, the here discussed method is obviously not applicable 

for clinical use in the actual alignment optimization of prosthesis, as the observed muscle 

atrophies are a long term result of prosthesis use. It does however demonstrate the 

physiological changes inherent to prosthetic walking. Muscle cross sectional area changes in 

response to their utilization frequency and magnitude. The reported atrophies hint at either a 

more effective walking pattern in amputees, or – more likely – an adaptation of the gait style 

that favors the remaining muscles at the expense of natural appearance. 

6.1.5 Common limitations and standards in research on artificial limbs 

The so far discussed amputee studies demonstrate a fairly wide spectrum of scientific activity, as 

well as the appropriate utilization of sound principles in terms of experimental design and 

statistical evaluation. However, those examples might not be representative of the typical 

research that has been published in the field: For one, many studies do not bridge the gap 

between basic and applied research and thus lack practical significance (Theo Mulder, Nienhuis, 

& Pauwels, 1998)]. Then again, in cases where actual interventions have been investigated, the 

scientific value and validity is often debatable.  
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Prosthetics and Orthotics (P&O) is traditionally a trade that depends widely on the 

practitioner’s personal professional experience. Accordingly, the consistent quality of prosthetic 

fittings can be questioned, which was done in a study by (Geil, 2002) who “determined the 

outcomes of the alignment of five different prosthetic practitioners given the same subject and 

components using kinematic and kinetic gait analysis. Differences in static alignment were 

quantified through instrumented gait analysis…” He found that “however, these differences 

were relatively small [which might suggest] that automated alignment is probably feasible”. The 

results of this study somewhat contradict the findings of (Zahedi et al., 1987) that are discussed 

above.  

Geil himself, in a later work (Geil, 2009), deliberates on the validity of studies with a limited 

sample size, as they are very commonly found in the field of prosthetics and orthotics: “research 

in P&O relies on basic research from other disciplines if it relies on basic research at all. While 

this phenomenon is partly due to the relative youth of sophisticated P&O research, the applied 

nature of the field also lends itself to applied research” (Geil, 2009). On the issue of P&O 

research, Geil goes on to lament “the dearth of randomized controlled trials, low numbers of 

subjects, difficulties in blinding subjects, variability in subject populations, threats to validity … 

and a host of other challenges. … Because P&O components are external and widely variable in 

appearance and function and because they are only suitable for certain individuals, randomized 

controlled trials are often impossible for component studies.” 

6.1.5.1 Criticism of studies on prosthetic alignment and gait performance 

There have been several studies investigating amputee gait, and comparing results between 

different alignment settings. Neumann (Neumann, 2009) in a recent review of the literature lists 

34 articles, sorted by type of perturbation and measured outcome. Among the included studies, 
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most involved the measurement of ground reaction forces, as well as perturbations in the 

sagittal plane. Almost all studies utilized a longitudinal design, where each subject serves as 

their own control, and measurements are conducted at different levels or types of intervention. 

Notable is also, that more than half of the studies were done with five or fewer subjects, while 

the largest number of participants in any of the studies was 18. Accordingly, the level of 

confidence in the results of individual studies that could be assigned by the reviewers was often 

low. On the question of external validity, findings were compared across studies when possible. 

The result was that of 113 evidence statements overall, only “two were rated at a high level of 

confidence, 41 at a moderate level of confidence, and the remaining 70 as having insufficient 

evidence to support the statement.”  

The two statements that rated high on the confidence scale were “A range of socket flexion-

extension angular alignments and a range of foot anterior-posterior translations seem to be 

acceptable to the amputee, with interactions between the two alignment variables limiting 

acceptable conditions”, which was a finding in 6 different studies, and “Walking speed exhibits 

no significant change with perturbation of socket angular alignment, foot linear position, or foot 

transverse angular position”, which was supported by a total of 7 studies. However, it is noted 

that contradicting observations were also reported, albeit mainly in studies with a low internal 

validity rating. Moreover, the fact that the reviewed studies were usually conducted with 

experienced prosthesis users and inside a gait laboratory raised the concern that the results 

might not be automatically transferable “to new amputees or to nonlaboratory conditions”. 

Considering the apparent range of alignments that is acceptable, it is concluded that “the 

subjective acceptability to the amputees of the initial alignment and subsequent alignment 

resulting from perturbations” should be measured in order to assure repeatability of the 

experiments. In the same sense, initial alignment settings should be described quantitatively. 
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Both issues call for the development of objective measuring methods and tools to facilitate a 

respective comparability and repeatability of prosthesis studies. Furthermore, it was concluded 

that many of the studies did not present “conclusions that were useful for alignment. As a 

result, few of the studies produced findings, which could be applied directly in the clinic.” 

The verdict on the question of optimal alignment is that “as a whole, there is insufficient 

evidence to make statements about the existence of measurable variables that define an 

optimal alignment” (Neumann, 2009). Statements with high confidence only confirm that 

certain parameters do not indicate misalignment. While some studies suggest that parameters 

exist that are correlated with alignment quality, those belong to the group of studies with low or 

insufficient confidence rating. 

6.1.5.2 Reviewing research relating to gait parameters, and typical interventions 

within 

Less critical reviews exist, and a selection shall be discussed here to help illustrate the various 

aspects of amputee gait research, as well as some more or less well established findings. 

A total of 115 publications on “biomechanical parameters of gait among trans-tibial 

amputees” have been reviewed and summarized in a review article by (Soares, Yamaguti, 

Mochizuki, Amadio, & Serrão, 2009). Some of the reviewed studies were addressing gait velocity 

as an outcome measure. Here, it was found that prosthetic components play a minor role. 

Instead, the physical abilities of the patient are determining factors. 

Interesting in our context are the conclusions that are stated on the question of gait 

symmetry: “With regard to inter-limb symmetry, Dingwell et al ... presented an important 

discussion on this subject. There have been several studies on symmetry as a measurement 

index for the efficiency of walk among amputees…  According to Winter and Sienko … structural 
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asymmetry in amputees creates adaptations to the musculoskeletal and nervous systems that 

consequently lead to an asymmetric pattern. These authors therefore rejected the presumption 

that efficiency of walk among unilateral transtibial amputees is linked to symmetry.” On the 

other hand, the review identified statements that support a contrary view: “Prior use of GRF to 

analyze inter-limb symmetry is an important indicator of mechanical overload imposed on the 

lower limbs… Chronic abnormalities of gait, as occur in cases of lower-limb amputation, may 

lead to degenerative problems such as meniscus lesions…” (Soares et al., 2009). In summary,  

standardized assessment methods are rarely established or even applied, mostly due to the fact 

that the subject population is highly heterogeneous, and that there is a large number of possible 

outcome measures that suggest themselves for evaluation. Furthermore, the findings and 

interpretations thereof of different studies in the field are not always consistent. Especially with 

regard to the validity of inter-limb symmetry as an outcome criterion, authors have published 

various conclusions, which in consequence leave this question unanswered. Further discussion 

of this problem follows later in this chapter. 

Aside from exchanging prosthetic components such as feet (Barth et al., 1992; A. Hansen, 

Childress, & Knox, 2000; D. Nielsen, Shurr, Golden, & Meier, 1988; Snyder, Powers, Fontaine, & 

Perry, 1995; R. Zmitrewicz, Neptune, Walden, Rogers, & Bosker, 2006), or adding adapters, such 

as torsion adapter or vertical damping units (Berge, Czerniecki, & Klute, 2005; Gard & Konz, 

2003; Segal, Orendurff, Czerniecki, Shofer, & Klute, 2009), it was mainly the static alignment of 

the artificial limb that was altered as an experimental intervention (Fridman et al., 2003; 

Sanders et al., 1998; Schmalz et al., 2002).  

Very little is known on the effects of fatigue on the walking pattern. In fact, generally efforts 

have been made to design study protocols so that fatigue would not occur and thus skew the 

findings (Buckley, Jones, & Birch, 2002; Sanders, Zachariah, Baker, Greve, & Clinton, 2000; 
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Torburn, Powers, Guiterrez, & Perry, 1995). In cases where fatigue was discussed as a relevant 

factor, its extent was not quantified. Instead, statements such as “Three of the amputees did 

not perform the … condition because of general fatigue caused by the walking” (Selles et al., 

2004) or acknowledgement of the mere fact that subjects were experiencing fatigue were 

included. While there is an extensive body of literature on the question of fatigue in able-bodied 

subjects, it remains unclear how applicable the respective methods and findings are to an 

amputee population. 

6.1.6 Fatigue as a variable in amputee research 

Generally, fatigue is a very broad concept that can be applied to any kind of physical or mental 

exhaustion, usually after a respectively tiring activity. With respect to the muscular strength, 

“[fatigue] may be defined as a reduction in the maximal force-generating capacity of a muscle.” 

(Gandevia, 1992). Countless studies have been conducted to investigate the mechanisms that 

cause muscle fatigue (Fitts, 1994), to identify how fatigue affects physical performance (Amann 

& Dempsey, 2008), describe how it alters joint mechanics and injury risk (Coventry, O'Connor, 

Hart, Earl, & Ebersole, 2006; Worrell & Perrin, 1992), and to develop diagnostics and treatment 

methods for underlying conditions (Bakshi, 2003), to name just a few of the related research 

questions. 

In the context of the proposed study, determining the level of fatigue -or exhaustion- is of 

interest to investigate the question if prosthesis performance is depending on the user’s muscle 

fatigue, and eventually, if the alignment that appears optimal for a rested user turns out to be 

less than optimal once fatigue sets in. The fatigue that is logically associated with ambulation is 

more of the systemic kind since multiple muscles are involved to varying degrees, and factors 

such as cardiovascular endurance as well as pain sensation are likely to influence the overall 
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level of exhaustion. Since the fatigue from walking is not limited in location, as the case in 

localized muscle fatigue that has been described by (Chaffin, 1973), it is difficult to simulate the 

effects in the laboratory without actually having the subject walk until tired.  

6.1.6.1 Role of specific muscle groups in amputee gait 

Previous studies investigated which muscles – in both legs – experience the highest work load in 

trans-tibial amputees (Isakov, Burger, Krajnik, Gregoric, & Marincek, 2001; Isakov et al., 2000; 

Moirenfeld, Ayalon, Ben-Sira, & Isakov, 2000; Renström, Grimby, Morelli, & Palmertz, 1983; 

Schmalz et al., 2001; Winter & Sienko, 1988; R. J. Zmitrewicz et al., 2007). In summary, it seem 

to be mostly the hip flexor and extensor muscles of the thigh that carry the workload of walking 

with a trans-tibial prosthesis. Their contribution is even more pronounced for the biarticular 

muscles that also affect the knee joint. 

While it is undeniable that muscles contribute differently to the gait pattern in amputees 

than in able-bodied subjects, it remains unclear to what extent muscle fatigue influences the 

outcome with respect to gait symmetry. (Moirenfeld et al., 2000) discussed the implied safety 

and overall performance deficits, and it seems logical to assume that walking symmetry is 

affected in a similar sense. A literature search does not bring up any publications on this 

assumed interrelation.   

One option for assessing muscle fatigue is the derivation from EMG readings. Respective 

algorithms have been proposed and refined for many decades (Cifrek, Medved, Tonkovic, & 

Ostojic, 2009; Lindström, Kadefors, & Petersén, 1977; Merletti, Lo Conte, & Orizio, 1991). 

Another way of measuring actual fatigue would be by means of self-assessment questionnaires. 

(Berge et al., 2005) in their prosthesis walking study utilized a quite complex questionnaire, the 

Multidimensional Fatigue Inventory (Smets, Garssen, Bonke, & De Haes, 1995), to that end, 
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which is a rather time consuming procedure that may not be most appropriate for many studies. 

An alternative, rather simple, subjective scale measures the RPE - “Ratings of Perceived 

Exertion”. It was developed over several decades of the last century by Swedish psychologist 

Gunnar Borg (Borg, 1970, 1998), and has been widely used in different subject fields. The RPE 

scale (table 12) considers the observed power function of stimulus intensity (S) and response 

(R): 

R = a + c(S – b)n 

[Equation 1] 

(with  

a, b = constants determining starting point of function, 

c = proportionality constant, 

n = exponent) 

Table 12: CR10 scale for perceived exertion (from Borg 1998). Instructions ask the subject to imagine 

Level 10 as the strongest perception of exertion ever experienced. Because it may be conceivable that 

an even stronger level exists, the scale does not end there. When grading the level of exertion, muscle 

fatigue, breathlessness and aches are to be considered. 

Score Exertion level 

0 Nothing at all 
0.3  

0.5 Extremely weak 

1 Very weak 

1.5  

2 Weak 

2.5  

3 Moderate 

4  

5 Strong 

6  

7 Very strong 

8  

9  

10 Extremely strong 

11  

~• Absolute maximum 



www.manaraa.com

127 
 

 

The author (Borg, 1982) noted that in “many studies, correlations of ratings and heart rates 

ranging from 0.80-0.90 have been found, but high correlations with other physiological variables 

… have also been found.” A more recent meta-analysis for the purpose of validity estimations 

(Chen, Fan, & Moe, 2002) found a somewhat limited validity of the subjective scale compared to 

the more objectively quantifiable assessment criteria. Nonetheless, there is a correlation that 

has also been reported for research involving amputees. (D. Hunter, Smith Cole, Murray, & 

Murray, 1995) found the results from the RPE scale in their treadmill-walking study to confirm 

additional measures as they “identified significantly lower ratings of perceived exertion, heart 

rates, and VO2s for able-bodied subjects vs. below-knee amputees for all trials.” (Kirby, Brown, 

Connolly, McRae, & Phillips, 2009) were using RPE in a study on stair negotiating efficiency of 

amputees. However, their small sample size of 8 precluded any statistically significant 

statement. 

Despite the acknowledged limitations in validity, it can be summarized that questionnaires 

are a legit tool for the estimation of overall fatigue, or exertion level. Especially, in the case of 

the RPE scale they are uncomplicated to handle in terms of both data collection and evaluation. 

Although the nature of such questionnaires suggest them to be used for observational rather 

than interventional studies, particularly when the level of exertion is supposed to be one of the 

independent variables (as in our case), it should be possible to design an experimental setup 

that accommodates this method. The intra-subject validity of the rating scale can be quantified 

by repeated assessment of the same exertive activity. Subject’s exertion can be assessed at 

different times of the ordinary test protocol, and the respective readings can be factored into 

the subsequent data processing and statistical evaluation. In the proposed study, walking would 

ideally be the way to induce the exertion; if that is not sufficient (e.g. in well-conditioned active 
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participants), an additional workout on an exercise machine would be used to provoke an 

exertion level that differs from the initially determined baseline. 

6.1.7 Research on amputee gait symmetry 

Following the short excursion on gait symmetry above, this chapter introduces some of the 

respective studies in more detail, in an effort to identify proven experimental methods, find an 

appropriate definition of gait symmetry, and help estimate the variables that influence the 

latter.  

6.1.7.1 Methods of assessing gait symmetry 

Most of the investigations on how to quantify and explain gait asymmetry in amputees during 

normal walking have been published in the 1980’s and 90’s. More recently, the attention seems 

to have shifted towards performance optimization questions and the respective tools and 

interventions to be used in that sense. Dingwell et al in 1996 published a paper that proposed 

the use of an instrumented treadmill for the purpose of obtaining consistent gait symmetry data 

(Dingwell et al., 1996), as well as a review on the available literature. At this time, the commonly 

described asymmetries were shortened stance phase durations (P. Baker & Hewison, 1990; J 

Breakey, 1976; Cheung et al., 1983; Seliktar & Mizrahi, 1986; Skinner & Effeney, 1985) as well as 

reduced ground reaction forces (P. Baker & Hewison, 1990; Seliktar & Mizrahi, 1986; Skinner & 

Effeney, 1985) of the prosthesis compared to the contra lateral limb. The description of gait 

asymmetries was usually merely qualitative (Skinner & Effeney, 1985). Quantitative evaluations 

were based on raw differences (P. Baker & Hewison, 1990; J Breakey, 1976; Cheung et al., 1983; 

Skinner & Effeney, 1985), or left-right limb ratios of observed variables (Seliktar & Mizrahi, 

1986). Lack of normal ankle motion due to missing active plantar flexion, has been cited as the 

primary cause of asymmetrical gait timing, knee joint motions, and increased muscle activities in 
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both limbs (J Breakey, 1976; Winter & Sienko, 1988). The loss of normal neuromuscular control 

and proprioceptive feedback leads to the increased variability in gait timing that has been 

observed between normal and amputee subjects (Zahedi et al., 1987).  

Dingwell et al. assumed the position that the goal of any intervention should be the 

optimization of walking symmetry. The used treadmill technology had the claimed “advantages 

… that it allows the rapid collection and comparison of temporal and kinetic parameters of gait 

for multiple successive strides, at a constant known speed, without forcing subjects to target 

their footsteps” (Dingwell et al., 1996), and has since been used for several related studies not 

limited to amputee walking (Kram, Griffin, Donelan, & Chang, 1998; White, Yack, Tucker, & Lin, 

1998). 

6.1.7.2 Defining gait symmetry from kinematic and kinetic measurements 

There is no uniformly applied way of quantifying gait symmetry. According to a review article by 

(Sadeghi, Allard, Prince, & Labelle, 2000), among the several equations that have been used, are 

the Symmetry Index (SI) first introduced by Herzog (Herzog et al., 1989) 

, 

[Equation 2] 

the ratio index, and derivations thereof, such as the “new ratio” proposed by Vagenas & 

Hoshizaki (Vagenas & Hoshizaki, 1992): 

 

[Equation 3] 
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along with “statistical approaches to determine similarities… between the lower limbs [that] 

might eliminate the main limitations of using the ratio index… Analyses have included 

correlation coefficients …, coefficients of variation…, and variance ratios…” The authors point 

out, that due to the complexity of the phenomenon of gait asymmetry, sophisticated statistical 

methods are called for, most notably multivariate data analysis. Principal component analysis is 

a recommended method, “to characterize the large number of variables calculated…” (Sadeghi 

et al., 2000). While those analyses have been successfully used in studies on healthy subjects, as 

well as on hemiplegic and stroke patients, many amputee studies have utilized some form of 

index measure. 

So was for instance inter-leg symmetry at high running speeds investigated by (Wilson, 

Asfour, Abdelrahman, & Gailey, 2009), who studied amputee sprinters by using treadmill, 

motion analysis and EMG data. “The symmetry index was computed by taking the individual 

values of Xsound and Xprosthetic for each complete gait cycle” (Wilson et al., 2009). While the 

selected X-variable in this paper was the spring stiffness of the sprint foot, it can be conceivably 

replaced by most any measured variable of the motion analysis protocol. 

An experimental design similar to ours was proposed in a study by (Chow et al., 2006), where 

“symmetry of various gait parameters in subjects with unilateral trans-tibial amputation [were 

investigated] over a range of acceptable anteroposterior translational and tilt alignments”. The 

gait of seven subjects was observed while walking on different surfaces and with stepwise 

altered prosthesis settings. “A total of 15 kinetic and kinematic parameters were” measured and 

averaged over five steps, and normalized by the body weight, including “Knee flexion at loading 

response”, “Maximum knee flexion during swing”, “Knee range of motion”, “Time to knee 

flexion loading”, “Time to maximum knee flexion”, “First vertical ground reaction force peak”, 

“Through of vertical ground reaction force”, “Second vertical ground reaction force peak”, “Peak 
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AP [anterio-posterior] braking”, “Deceleration impulse”, “Acceleration impulse”, “Peak AP 

propulsion”, and “Stance duration”. 

After calculating the absolute asymmetry index (AAI) for each of the 15 parameters 

separately, they were ordered according to their weight in the overall mean AAI. Subsequently, 

the less influential parameters were removed to obtain a simplified table, leaving the six 

parameters with the highest average symmetry.  

Hereby it was remarkable, “that some parameters show consistently higher symmetries, 

particularly the vertical ground reaction force parameters ...”, and that some alignment settings 

seemed to influence gait parameters in contrarian fashion. According to this, no alignment 

setting was found that optimizes symmetry for all considered gait parameters simultaneously. 

The authors suggest several explanations for “Asymmetry in a particular parameter …: 

(1) Simply the fact that this parameter is not relevant to healthy prosthetic gait; 

(2) That the parameter is relevant to healthy prosthetic gait, but the asymmetry is a 

reflection of the biomechanical difference between the prosthetic and contralateral sides; 

or, 

(3) That symmetry in this parameter is relevant to healthy gait, but can only be achieved 

at the expense of a certain level of symmetry in another parameter.”  

On the merit of gait symmetry as an alignment assessment criterion, they state the possibility 

that “… optimum symmetry in these six parameters is not an adequate method of determining 

the optimum alignment, or simply that an optimum alignment does not exist” (Chow et al., 

2006). 

The usability of gait analysis has been investigated in a clinical study by (Van Velzen et al., 2005). 

Accordingly, the motion analysis system’s use for the purpose of identifying misaligned 
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prosthetic settings was questioned. Instead the variables ground reaction force and ankle joint 

moment appeared as possible indicators of alignment alterations. (Tesio, Lanzi, & Detrembleur, 

1998) had come to a similar conclusion when comparing kinematic data with the time variant 

position of the center of gravity and the calculated external work provided by either leg: “it has 

been shown that in unilateral lower limb amputee gait, the motion of the [center of gravity] can 

be more asymmetric than might be suspected from kinematic analysis...” (Tesio et al., 1998). 

Again, this work supports the notion that force and moment measurements are more significant 

in determining gait symmetry than mere kinematic assessment. 

6.1.7.3 Influence of walking speed on compensatory mechanisms  

Compensatory muscle activation was discussed in a study on amputee gait in different walking 

speeds (Silverman et al., 2008).  Statistical analysis showed that, while the sound leg contributes 

a greater part of the overall propulsion work, the respective ratio between the legs did not 

change with the walking speed. Aside from the finding, that the prosthetic foot design was of no 

significant influence, it was the conclusion regarding gait speed and symmetry that is of 

interesting in our context: “the amputees did not display greater GRF asymmetry as walking 

speed increased… In addition, it appears loading symmetry is not likely a reason amputees have 

a slower self-selected walking speed compared to control subjects, as asymmetry was not 

influenced by walking speed” (Silverman et al., 2008). According to those findings, it appears to 

be expendable to control the variables foot selection and walking speed in comparable studies. 

6.1.7.4 Inter-limb symmetry in running 

The question of gait symmetry is not merely if interest in the field of disability and rehabilitation. 

An area where even slight deviations from the perfect left-right symmetry can have significant 

implications is sports biomechanics. The objective to optimize training methods and competitive 
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performance includes in many cases respective considerations. Most obvious is the requirement 

of perfect symmetry probably in sports such as weightlifting or rowing. It must not be 

discounted in running and sprinting though, as (Exell, 2010) points out: “Many biomechanical 

studies of sprint running have collected spatio-temporal data unilaterally due to constraints on 

data collection... [However, in] the event of a large amount of asymmetry being present for an 

athlete during sprint running, a unilateral analysis could provide an incomplete description of 

technique and important kinematic and kinetic factors could be overlooked if they occurred in 

the limb that was not chosen for analysis” (Exell, 2010) pp 42 ff. 

Regarding running asymmetry in amputee athletes, the motivation for such assessment can 

even be extended “due to the physiological asymmetry of such athletes. Investigations of 

unilateral amputees allow direct comparison between an affected and intact limb within a 

subject (Hillery & Wallace, 2000) so that the effects of the prosthesis on technique can be 

compared to the intact limb.”  

The related literature includes a study by (Sanderson & Martin, 1996) who compared running 

at two defined speeds between able bodied and trans-tibial amputee subjects, and a quite 

similar study by (Buckley, 1999), who had recruited “five of the world's best unilateral amputee 

sprinters” and used kinematic analysis based on digital video data. In the Wilson study, the main 

intervention was a change in prosthesis height, which affected the overall stiffness of the 

artificial limb during running and the peak forces. Interestingly, those patterns were entirely 

different between the two participants of the study. The authors recommend for future studies 

that “[the] number of amputee subjects analyzed should be increased for future research…” 

(Buckley, 1999). 
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6.1.7.5 Symmetry in trans-femoral amputees 

Even more so than in trans-tibial amputees, achieving a high degree of gait symmetry is a 

challenge for patients with higher level amputations. For trans-femoral amputees where the 

knee joint is lost, the resulting necessary compensation mechanisms exceed those that are 

applied by users of trans-tibial prostheses. Many studies are concerned with the influence of 

prosthetic components on the gait pattern (Graham, Datta, Heller, Howitt, & Pros, 2007; Jepson 

et al., 2008)(to name a few), which is legitimate due to the crucial role that prosthetic knee or 

foot parts play in this population. A commonly used evaluation criterion here is indeed the gait 

symmetry, as this is generally conceived as a direct function of the prosthesis components’ 

performance. The swiftness with which a chip controlled knee joint, for instance, adapts the 

hydraulic flexion resistance to changing walking speeds determines how comfortable, safe, and 

eventually symmetric the gait will be. Obviously, trans-tibial and trans-femoral amputation 

levels are hardly comparable with respect to realistically expectable outcomes. Yet, some 

considerations that are of relevance in our context are discussed in the respective literature. 

(Tura et al., 2010) conducted a study “to evaluate a method based on a single accelerometer 

for the assessment of gait symmetry” in trans-femoral amputees. The authors conclude that this 

simple method “is adequate for the assessment of gait symmetry and regularity in trans-femoral 

amputees” (Tura et al., 2010). While the objective of this study was somewhat similar to the one 

for our proposed work, it appears that the introduced technique has some shortcomings. 

Defining gait symmetry merely by comparing readings from in-shoe force transducers disregards 

most of the kinematic and kinetic parameters that have been discussed to determine gait 

symmetry. Furthermore, the binary distinction between “good” and “bad” symmetry, based on 

a somewhat arbitrarily selected parting line, is rather coarse and probably insufficient for most 

practical purposes. There is a good chance that a similar assessment could be made entirely 
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without instrumentation, just by observing the subject walk. Another study that was looking at 

inter-leg symmetry and how it is influenced by alignment changes, evaluated trans-femoral 

runners (Burkett, Smeathers, & Barker, 2001). It came to the conclusion “… that for all four 

[trans-femoral] subjects, who used the same prosthetic components, lowering the prosthetic 

knee joint centre improved their interlimb symmetry, and subsequently their running velocity by 

an average of 26%.” (Burkett et al., 2001) This work is listed here for the sake of completeness, 

although its practical significance is likely limited. Running is usually not a recommended activity 

for trans-femoral amputees, and at least for recreational purposes it is practiced by very few. 

However, we do find support for the general point, that improved symmetry enables a higher 

level of performance. 

6.1.8 Discussion on the value of gait symmetry 

A common feature of publications on amputee gait assessment is a discussion on the validity of 

gait symmetry as a “gold standard”, or alternatively a stated or implied assumption that said 

validity is indeed given. Some of the articles that will be discussed in the following are dedicated 

to this question entirely, albeit without providing a conclusive answer.  

The issue is not limited to the field of prosthetics, as (Sadeghi et al., 2000) points out in a 

review of the literature. According to this, questions that are controversial in the assessment of 

able bodied gait include”(a) whether or not the lower limbs behave symmetrically during able-

bodied gait; and (b) how limb dominance affects the symmetrical or asymmetrical behavior of 

the lower extremities.” As a result of the literature review it was found “that gait symmetry has 

often been assumed, to simplify data collection and analysis.” Other studies that investigated 

“asymmetrical behavior of the lower limbs during able-bodied ambulation [suggested that this 

corresponds to] natural functional differences between the lower extremities … probably 
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related to the contribution of each limb in … propulsion and control during able-bodied 

walking.” A popular explanation claims that laterality is responsible “for the existence of 

functional differences between the lower extremities, although … [further] investigation is 

needed to demonstrate functional gait asymmetry and its relationship to laterality...” (Sadeghi 

et al., 2000). 

Along those lines, the concept of functional asymmetry has been postulated since. It is 

described by (Rice & Seeley, 2010): “Functional asymmetry is an idea that is often used to 

explain documented bilateral asymmetries during able-bodied gait. Within this context, this idea 

suggests that the non-dominant and dominant legs, considered as whole entities, contribute 

asymmetrically to support and propulsion during walking.” The authors conducted a study that 

determined the dependence of functional asymmetry upon walking speed. To that end, 

“[bilateral] ground reaction forces (GRF) were measured for 20 healthy subjects who walked at 

nine different speeds… support and propulsion impulse were quantified in order to determine 

the contribution of each leg to support and propulsion” (Rice & Seeley, 2010).  

Concepts like laterality and functional asymmetry could conceivably be applied to (unilateral) 

amputee studies as well, if one would assume that the non-amputated leg is the dominant one. 

Consequently, a certain asymmetry would have to be considered as normal, maybe even 

desirable in the interest of achieving a natural gait pattern. The objective of prosthetic 

optimization would then be to facilitate an asymmetry that falls well in the commonly observed 

range of asymmetry in able-bodied walkers. However, it should be noted that the used methods 

of establishing gait symmetry parameters in above mentioned studies take only part of the 

available variables into account.  
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(Wilson et al., 2009) remarked: “It is not clear whether improved symmetry of kinematic and 

kinetic biomechanics provides an advantage or disadvantage to amputee gait…” Among the 

publications that support this ambiguous notion is (Fridman et al., 2003), who observed 

kinematic parameters in prosthesis walking with suboptimal foot rotation angles, finding that  

“Speed of gait remained almost constant … [however, stance] and swing time, as well as step 

length, significantly changed when 36 degrees were added to the optimal foot angle.” Despite 

the inter-leg symmetry, their subjects managed to offset the misalignment “…by internal 

rotation of the limb at the hip joint level. It is concluded that TT [trans-tibial] amputees can 

maintain an efficient speed of gait even when the prosthetic foot is malpositioned in excessive 

external rotation. Although such a malalignment significantly influences other gait parameters 

during walking, amputees are able to adapt themselves by internal rotation of the hip joint in 

the amputated leg” (Fridman et al., 2003). 

(Hurley, McKenney, Robinson, Zadravec, & Pierrynowski, 1990) in an earlier study found that 

“amputees demonstrated a lesser degree of lower limb symmetry than … non-amputees.”  

Despite this apparent misbalance and need for compensatory activity, they computed “…forces 

acting across the joints of the contralateral limb [that] were not significantly higher than that of 

the non-amputee. This suggests that … there will not be increased forces across the joints of the 

contralateral limb and consequently no predisposition for the long-term wearer to develop 

premature degenerative arthritis.” While those results seem to downgrade the importance of 

walking symmetry in amputees, other authors have come to different conclusions. 

According to the reasoning of (Isakov et al., 1996), who were investigating that the “speed of 

gait in trans-tibial amputees significantly affected the symmetry of all temporal and distance 

parameters as well as the symmetry of knee angles during load response and toe-off”, it is still a 

crucial objective to facilitate a natural gait pattern by prosthetic alignment: “Gait inter-leg 



www.manaraa.com

138 
 

 

symmetry is considered to be perfect when all measured gait parameters in both lower limbs 

are equal. Symmetry between legs indicates a normality of gait, and therefore prosthetic 

rehabilitation aims at fitting amputees with an artificial limb which will reproduce as closely as 

possible the performances of a normal leg…” (Isakov et al., 1996). 

A direct contradiction to Hurley’s conclusion is found in (Nolan et al., 2003), who conducted a 

similar study as Fridman: “With increasing walking speed, temporal gait variables reduced in 

duration, particularly on the prosthetic limb, while vertical ground reaction force … increased in 

magnitude, particularly on the intact limb… The greater force on the intact limb may reflect the 

method by which the amputees achieve greater temporal symmetry in order to walk fast, and 

could possibly account for greater instances of joint degeneration in the intact limb ...” (Nolan et 

al., 2003). 

A contribution to the discussion on practical significance of gait symmetry is the work of 

(Bach, Barnes, Evans, & Robinson, 1994) who, by means of a computer simulation, adjusted 

inertial loading and mass distributions in trans-femoral prostheses with the objective to 

maximize swing phase symmetry. Tests with five amputee subjects that were wearing the 

symmetry optimized prostheses, resulted in significantly greater swing phase symmetry, while 

oxygen consumption was reduced, and subjective ratings were improved. Dingwell states that 

this obviously “support[s] the idea that improved gait symmetry …  is related to reduced energy 

expenditure, and is therefore an appropriate goal in rehabilitation” (Dingwell et al., 1996). 

6.1.9 Mobile force transducers and alternative or similar assessment tools 

The sensor unit “iPecs” that is intended to be used in our study was introduced by the 

manufacturer (College Park Industries, Fraser, MI) in 2009, initially as a research device, but with 

the declared objective to make it a clinical tool for the practitioner. Research literature at this 
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time is rare, and essentially concerned with the validation of the obtained measures (LeGare, 

2009), or the somewhat unreflecting utilization as a “mobile gait lab” (Papaioannou & Wood, 

2011). No work has been reported that could be interpreted in the sense of letting the findings 

become directly useful for prosthetic alignment optimization. However, alternative approaches 

to providing technical tools for the alignment task, as well as for a mobile gait assessment 

method, are well documented. 

Blumentritt noted that “prostheses aligned during one session in the traditional subjective 

manner seem to lack any recognizable biomechanical systematic” and proposed a method that 

utilizes a single force plate. The center of pressure was determined while subjects were standing 

with one leg on, and one leg next to the force plate, leading to a recommendation on how to 

objectively verify a proper alignment: “Initial results suggest the knee centre should be 10 to 

30mm behind the load line, depending on patient's weight. This knee position is independent on 

the type of the prosthetic foot” (Blumentritt, 1997). The findings have been essentially 

confirmed and recommendations extended to include the position of the foot in the frontal 

plane (Blumentritt et al., 1999; JW Breakey, 1998). 

For dynamic assessment, instrumented footwear is available. Bontrager, in a book chapter 

(1998) describes “Force measuring sandals [as capable of] record[ing] vertical force data from 

portable transducers attached to the bottom of the feet” (Bontrager, 1998). Similar systems 

have been proposed by other authors (Kitayama, Hada, Kawauchi, Yokota, & Hamada, 2010), 

who suggest their usability in prosthesis research. Also have wearable pressure sensors been 

used to investigate dynamic stability of amputee walking (Kendell, Lemaire, Dudek, & Kofman, 

2010), in an effort to investigate their “potential for falls and the dynamic stability measures”. 

Various parameters were found to be different between amputees and able bodied subjects, 

suggesting that fall risks in prosthesis users need to be investigated separately. It should be 
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mentioned that many studies on fall mechanics do not use wearable sensors, but force plate 

equipment instead (Beschorner & Cham, 2008). A shortcoming of such wearable sensors is 

probably the lacking rigidity in connecting to the weight bearing structure. Every relative 

motion, however small, causes shear forces that cannot be sufficiently interpreted by traditional 

force transducers. 

Accordingly, there have been attempts to include load cells directly in line with the weight 

bearing structure. In non-amputee subjects, that is not an option, although studies have been 

reported with wireless sensors that were integrated in hip endo-prostheses (Hodge et al., 1989), 

as well as with instrumented crutches (Slavens, Sturm, Bajournaite, & Harris, 2009). Boone 

reported findings of measurements with an integral force transducer for artificial limbs, similar 

to the iPecs that is to be used in the proposed study. “The Prosthesis Alignment Instrument, 

(PAI) was used to measure and affect sagittal and coronal changes in angular (±3° and ±6°) and 

translational (±5mm and ±10mm) alignment. [It] measured axial force, sagittal moment and 

coronal moment.” Based on subjective perception of the participating prosthesis users, the 

effects of alignment perturbations were specified. Computational methods (“Discrete non-linear 

algebraic modeling’) allowed the prediction of alignment changes from the measured data with 

errors of about “1.13° of angulation and 1.96 mm of translation” (Boone, 2005). The PAI has 

been patented (Macomber, Boone, & Beck, 2011) and is now commercially available under the 

name “compass” (OrthoCare Innovations, Oklahoma City, OK). 

6.1.10 Questionnaires 

The overall satisfaction of an amputee with the prosthetic fit has been topic of research from 

various fields, including Psychology and Occupational Therapy (Bilodeau, Hébert, & Desrosiers, 

1999, 2000; Davidson, 2002; Dillingham, Pezzin, MacKenzie, & Burgess, 2001; Gallagher & 
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Maclachlan, 2001; Kegel, Carpenter, & Burgess, 1977; Matsen, Malchow, & Matsen, 2000; 

Murray & Fox, 2002; C. Nielsen, Psonak, & Kalter, 1989; Pezzin et al., 2004).  

The Amputee Activity Score (AAS) as an outcome measure was proposed by (Day, 1981). The 

paper based assessment method is claimed to take “about 15 minutes and [uses] the minimum 

of observer judgement.” Unlike extensive physiological testing, accelerometer monitoring or 

clinical judgment by an observer, this scoring method is intended to be “unrelated to age, sex, 

gait and other disability … quick and simple to apply...” This is accomplished by the standardized 

interview form, which requires no observer judgment other than “asking the patient to 

reconsider his answers if they appear unlikely” (Day, 1981). The completed form can be easily 

evaluated by means of a marking aid, which delivers a numerical activity score between -70 and 

+50. The AAS was validated by correlating results with clinical assessment results, and with 

annual step count. Likewise, the repeatability was determined by comparing repeated measures 

over a several months long span. The findings indicate the feasibility of this method for 

uncomplicated assessment of amputee activity, and it has since experienced widespread use in 

respective research studies. Although it has been slightly modified in recent years, it is still a 

paper based test. Efforts of transcribing the questionnaire into a computer program that would 

allow collection of the information by completing a virtual form e.g. on a touch screen device 

are probably not put forth as the traditional method is deemed straightforward and efficient 

enough for most purposes. However, such computer based methods have been proposed and 

successfully implemented in outcome measures of assistive technology (Edyburn & Smith, 2004; 

Smith, 1996) and might be realized at a future stage also for tools like the AAS. 
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6.2 Study Design and Selection of Methods  

Purpose of this subchapter is to convey detailed information on the utilized method while 

avoiding extensive redundancy. It addresses the aspects of methodology and study design that 

have been consistent over all the three parts of the study in chapters 2 through 4.  

6.2.1 Overview of utilized methodology 

Major objective of this work was to compare trans-tibial amputee gait kinematics and kinetics 

under different conditions regarding the ankle alignment and the physical exertion of the 

amputee. Data collection utilized conventional gait analysis equipment, as well as wearable and 

prosthesis-integrated devices that delivered additional measurements. Force and moment data 

were obtained with an “iPecs” sensor device, as well as - for those steps that happened inside 

the laboratory - by force plate measurements. The effect of two different interventions was 

investigated: Change of the prosthetic ankle alignment, and change in exertion level. This setup 

allowed the comparison of 4 conditions in a 2 x 2 repeated measures analysis of variance (table 

13) based on the conventional gait analysis. Dependent variables were typical gait analysis 

parameters that were considered individually, or combined in indices of kinematic and kinetic 

parameters for different sections of the analysis, as detailed in chapter 2. 

Table 13: Study design 

 low exertion ”strong” exertion 

normal alignment     

2 deg plantar flexion     

Concurrent measurements by conventional gait analysis method and integrated sensor 

method were used to validate the mobile sensor data, which was a prerequisite for using this 

continuous data for steady monitoring of the variables over the course of the entire test session. 

Gait data of all subjects over all interventions was used for correlation analysis (table 14). 
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Table 14: Study design for kinetics comparison 

 
Conventional Gait Analysis 

Data Mobile Sensors Data 

 low exertion 
”strong” 
exertion low exertion ”strong” exertion 

normal alignment         

2 deg plantar flexion         

Instrumented gait analysis is an established method in amputee research, and was adopted 

for this study. The same is the case for EMG measurements, which - in a small scale - were 

implemented as well. A novelty is the prosthesis-integrated sensor unit, which is capable of 

collecting somewhat unusual data. Correlating those data to established measures is necessary 

to answer the study questions. 

In the following, components of the methodology are explained, related to the literature, 

and their appropriateness is justified. 

6.2.2 Prosthesis technology 

No standardization of prosthesis design has been attempted for this study. While many studies 

controlled for this factor by manufacturing new prostheses after a consistent method for the 

use during the data collection (Chow et al., 2006; Sanders & Daly, 1999), this effort was not 

indicated for our purposes. Instead, the fit of the prosthesis was assessed prior to data 

collection, based on the reports by the user and the judgment of an experienced prosthetist 

(Fridman et al., 2003).  

Considered how individualized the fit of prostheses usually is, it seems reasonable to 

standardize the requirements with respect to outcomes rather than to the employed 

manufacturing technique and technology. The concept of a well-fitting prosthesis may mean 

completely different things for different patients. One user may walk best with a silicone liner 
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suspension, while another one prefers the softer and usually thicker polyurethane solution. In 

the lengthy process of optimizing the prosthetic care, those preferences have been identified 

and accommodated. In the result, both patients can display the same level of comfort and 

activity with their respective artificial legs – provided their physiological given facts are 

comparable. If we now would standardize the fitting technology to one material or the other, 

we would likely reduce this comfort (and activity) level for one subject but not the other. 

Essentially the same is true for the question of socket designs and functional components. Even 

though there are large differences between mechanical characteristics of available feet 

components, it has been shown that in fact the walking speed influences the ground reaction 

forces much more than the foot type (Silverman et al., 2008). 

6.2.3 Gait velocity 

Instead of controlling for the walking speed, participants were asked to walk in a self-selected 

speed. Speed has not been selected as an intervention variable, as the requirement to collect 

steps in a predefined range of walking velocities would potentially increase the number of 

repetitions and tire the amputee subject out before the desired amount of walking samples has 

been collected. Setting the margin of speed definition too wide may reduce the number of 

necessary repetitions, but will affect the significance of the results. The alternative use of a 

treadmill to standardize walking speeds (Dingwell et al., 1996) was not considered, in order to 

provide comparability across trials on different surfaces. Gait velocity was measured and used as 

a comparison criterion within different trials of the same subject. 

6.2.4 Interventions 

Apart from walking on the level surface of the gait lab floor, subjects were asked to absolve a 

circular walking path on some irregular walking surfaces as well. A foldable 10-yard gravel path 
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had been set up so that it can be used within the regular laboratory capture volume. The 

principle is similar to a custom made irregular surface that has been used for a recently 

published study on amputee gait (Curtze, Hof, Postema, & Otten, 2011). The main advantage of 

having the gravel path cover the force plates is that subjects could use the safety harness that is 

connected to a rail on the ceiling. Force plate data were not deemed dependable, due to the 

irregular size and distribution of stones.  

After the gravel path, subjects were asked to walk along the hallway and to climb a flight of 

stairs, in order to reach the outdoor parking lot, cross the parking lot, and return to the lab on a 

different route through the building (figure 31). While those walking trials were mainly intended 

to serve as a fatiguing exercise to reach the desired level of exertion, they also yielded data that 

promise to be interesting for subsequent analysis in possible follow-up studies6.  

Stair walking has been investigated before, mostly to describe the functionality of the used 

prosthetic components (Powers, Boyd, Torburn, & Perry, 1997; Schmalz, Blumentritt, & Marx, 

2007), or develop better ones (Au et al., 2008). Experimental setups may feature a small stair 

that can be climbed in the gait lab while using one of the floor force plates to capture the 

kinetics of one foot during landing from the step or pushing up to climb the step. More 

elaborate structures have instrumented steps integrated in the stairs, which allows a more 

                                                           
6 Although members of the research team accompanied the subjects while doing so, this condition 

could be considered walking in a real-life environment. Data was solely collected by means of the mobile 

iPecs systems, and could be used to compare walking in and outside the lab. A more diverse selection of 

walking surfaces might seem desirable in order to provoke more significant differences in the data. 

However, it may be already a considerably different condition to just walk outside of the controlled 

confinements of the laboratory, away from the critically observing eyes of the technician, and on the way 

to a destination (for instance the stairwell) instead of just “aimlessly” walking up and down.  
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natural motion pattern during ascend and descent alike. A setup like this, although desirable, 

did not fit in the scope of our study at this time. Stair ambulation mechanics are too complex for 

an in-depth investigation in our context. Instead, the iPecs readings could be used to merely 

compare step-by-step and inter-leg symmetry, similarly than for all other interventions (see 

manuscripts in Appendix D). 

With respect to prosthetic alignment, two levels of perturbation have been included: 

Optimal alignment, which we assumed to be the original alignment that was found when the 

subject arrives, and a by 2 degrees increased ankle plantar flexion, which was considered a 

subtle misalignment. This was easily realized by adjusting the setscrews of the standard modular 

adapters in the prostheses (figure 30). Connections between prosthetic components in the 

standard modular system (Naeder & Naeder, 2000) are realized by adapters with a four faced 

inverted pyramid structure on a spherical base (male adapter), and respectively with four set 

screws around an opening that accommodates the pyramid structure (female adapter).  The 

magnitude of alignment changes followed respective examples from the literature. A range of 

six degrees of socket tilt in anterior-posterior direction has been reported to be on the brink of 

acceptability for most amputees (Chow et al., 2006). Three and six degrees respectively have 

been used as typical perturbations to demonstrate changed kinetics (Boone, 2005). Even a ten 

degree change as an intervention has been used before (Pinzur et al., 1995), which indicates 

that our selected perturbation is indeed subtle in comparison.  
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Figure 29: Alignment mechanism of prosthesis modular adapter 

In order to simulate the real-life occurrence of the prosthesis user being fatigued, a 

respective intervention was included. As already discussed in the respective paragraphs of the 

literature review section earlier, the definition of an appropriate fatigue protocol is not trivial. 

The most influential muscle group for trans-tibial gait seems to be the hip-extensors. However, 

an exercise that targets fatiguing of those particular muscles will require the prosthesis be worn 

for leverage or support, which in turn increases the risk of friction-induced skin breakdown and 

further inconvenience. Unilateral fatiguing of the sound leg would result in a condition too far 

off of the actually expected situation that is supposed to be simulated. Instead of applying a 

standardized fatigue protocol, the fatigue level was monitored as an uncontrolled variable. After 

the first two walking trials in the lab (one with the original alignment, one with the increased 

ankle plantar flexion), subjects were asked to continuously walk along the path (figure 31) while 
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frequently reporting their perceived exertion on the Borg RPE scale (Borg, 1998).  The data 

captured during the repetition where the perceived exertion reached 5 on the CR10 scale was 

used for the evaluation. Immediately following, the ankle alignment was returned to its 

misaligned state, and subjects were asked to complete one last walking trial, during which data 

was captured as well.  

 
Figure 30: Schematic of the walking path in and outside the laboratory building. Total length 

of the loop is 210 meters, 40 of which are outdoors 

 

6.2.5 Population and Sample 

Irrespective of the heterogeneity that is typical for the amputee population, broad inclusion 

criteria were defined. This had mainly practical reasons, knowing that subject recruitment is 

generally an issue in comparable studies. Since many amputee studies used heterogeneous 

samples, e.g. subjects with traumatic amputations together with diabetics, comparability of the 
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results would be given within the limitations of significance due to sample size problems. The 

effect size of the proposed interventions could hardly be estimated. Particularly, the expected 

effect was minimal for the 2 degrees of additional plantar flexion. As the conditions would be 

compared within subjects, this effect size would have to be related to the standard deviation of 

gait parameters within this particular subject. As we assumed that subjects are proficient in 

prosthesis walking, this standard deviation might indeed be smaller than the effect size of the 

alignment perturbation. (Sin et al., 2001) and (Chow et al., 2006) who used similarly subtle 

alignment changes had sample sizes of six and seven amputees respectively. On the other hand, 

the effect of the exertion was expected to be more pronounced. No comparable intervention 

studies could be identified, but those amputee studies that investigated different exertion levels 

had sample sizes of eight and seven (D. Hunter et al., 1995; Kirby et al., 2009).  

Our study had a sample size of 10. This is admittedly well below any sufficient sample size for 

a conservatively expected small effect size, but so would have been a sample of 18, which is the 

biggest of the sample sizes in prosthesis alignment studies (Neumann, 2009). 

Subjects were recruited by distributing flyers in local prosthetist offices, at amputee support 

group meetings, and by posting search ads in online platforms, as well as by direct contact. 

Persons from 18 to 80 years of age with trans-tibial amputations who use prosthesis built in 

modular technique, and are able to walk at least 30 minutes per day pain-free and without 

assistive devices could participate in this study. Persons whose prosthesis did not provide 

enough space between socket and foot module to fit the mobile measuring unit (about 2 

inches), or persons who were physically or mentally unable to perform the required tasks could 

not participate in this study. An initial screening to assure eligibility was conducted a few weeks 

prior to the data collection session. In accordance with usual IRB requirements, informed 

consent was obtained in person. 
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6.2.6 Hardware 

A 10 camera (Raptor-4 digital) motion analysis system (Motion Analysis, Santa Rosa, CA) in 

combination with 3 force plates (BP400600, AMTI, Watertown, MA) was used. The marker 

protocol followed the Cleveland Clinic Convention, as this was considered versatile and efficient 

for our purposes. Combined data acquisition used NI DAQ equipment (National Instruments, 

Austin, TX). The primary processing software was Cortex (Motion Analysis, Santa Rosa, CA) 

running on a Windows-PC. 

Four channels of a wireless EMG system (“Trigno”, Delsys, Boston, MA) were used to 

continuously capture EMG signals from the biceps femoris and quadriceps femoris muscles of 

both legs. The system has integrated accelerometers that help reduce motion artifacts, a 

sampling rate of 2000 or 4000 Hz, and a wireless transmission range of up to 40 meters. 

 

Figure 31: Principle of strain gage assembly in iPecs 

The “iPecs” (College Park Industries, Fraser, MI) is a research grade measuring tool that 

essentially consists of multiple arrays of strain gages, housed in a shell of 1.8” x 2.8” x 3.2”. The 

gages, four at a time, are connected in Wheatstone bridge circuits which are aligned in varying 

orientations within the structure. Based on a calibration matrix, the readings of those units are 
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combined to output force and moment data. A total of eight such Wheatstone bridges are 

assorted around the central pylon (figure 32). A user interface allows the definition of knee and 

ankle joint axis with respect to the center of the iPecs device, upon which the respective 

moments at those points are derived by means of respective transformation matrices (Leydet, 

2011). The assumption of a rigid body between those points is justified by the stiffness of the 

prosthesis structure, and the necessary good connection between residual limb and socket. Data 

can be streamed wirelessly via a radio transmitter to a personal computer, or alternatively 

stored on a micro SD card within the unit. Sampling rates can be defined to be between 30 and 

1000 Hz.  

To facilitate a repeatable and accurate misalignment and eventually reconstitution of the 

original alignment, a double-plumb-line frame was used (Figure 33). The doffed prosthesis could 

be placed in the center of the lower platform, 

where the foot position was marked by pencil 

outline. Plumb lines were marked on the socket 

while the parallel threads of the frame helped 

prevent parallax errors. Besides the 

perpendicular lines, there are lines spanned in a 

2 degree angle for easy alignment position 

changes. The origin of this angle is at the ankle 

joint at 7 cm over the ground, as this is roughly 

the height of most prosthesis feet ankles. 

Figure 33: Prosthesis alignment aid 
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6.2.7 Data synchronization and validation 

Camera, force plate and EMG data are routinely synchronized within the motion analysis system 

software, which was used to collect and process those data. The sampling rate of the iPecs unit 

was determined so that the collected data had a time base compatible with the gait laboratory 

data. Synchronization was then supposed to be based on a significant event within the gait 

cycle, namely the instant of heel contact, which is marked by a typical increase in vertical ground 

reaction force in both measuring entities. 

 One of the objectives of this work was to determine the concurrent validity of the 

integrated sensor data, which requires the statistical comparison of the novel data with 

simultaneously measured data from a validated system, in this case the conventional motion 

analysis and force plate system. Several approaches are documented for this, such as the 

identification of gait curve landmarks and subsequent error calculation based on those discrete 

values (Bamberg et al., 2008), the quantification of deviations by a dedicated index (R. Baker et 

al., 2009; Kark, Vickers, Simmons, & McIntosh, 2009), and eventually some variation of 

correlation analysis (Cutlip et al., 2000; Thompson, 1991). As the here applied data collection 

method provided time-variable continuous gait curves, both a comparison of landmark values, 

as an overall correlation of curves could be conducted. 

6.2.8 Data collection  

At the beginning of the session, the Ratings of Perceived Exertion table (Borg, 1998) was 

explained to the participant, and perceived exertion before the start of the test was noted. The 

subject was asked to again report perceived exertion repeatedly throughout the test session in 

order to be able to monitor this parameter.  

 In preparation of the data collection, the existing prosthesis of the subject was then 

modified for this study; by the student PI who is trained as a prosthetist. Modifications included 
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the replacement of the tube adapter above the foot module with the iPecs integral sensor unit, 

and if necessary a respectively shorter tube adapter to maintain the overall length and 

alignment of the prosthesis. In the gait lab, the subject donned the modified prosthesis. 

Reflective markers were placed by double-sided adhesive tape on the skin of the subject. 

Likewise, two EMG sensors were placed on each leg at the quadriceps and biceps femoris 

muscles, and secured with coban. A wearable heart rate monitor was strapped to the subject’s 

chest. Anthropometric data, such as limb dimensions, subject height and body mass were 

measured. The Amputee Activity Score sheet was completed based on subject’s self-report. 

The motion analysis system was used to capture data. Continuous iPecs and EMG 

measurements were conducted while subjects are performing these tasks in subsequent order, 

interrupted regularly by breaks to rest, and have the procedures explained: 

1) Perform a set of maximal voluntary contractions of the thigh muscles (3 times for 4 

seconds for each quadriceps and biceps femoris) 

2) Walk in their preferred speed through the capture volume of the gait lab (until at least 

one valid trial had been collected),  

3) Have the prosthetic ankle position adjusted to 2 degrees increased plantar flexion 

4) Repeat step 2, after which the normal alignment was reconstituted 

5) Accompanied by the PI and a staff member, walk along the hallway outside the gait lab, 

walk down the stairs to the 1st floor and out the building door, cross the parking lot, use the 

main entrance to come back in, climb up the stairs, and return to the lab 

6) Walk through a 10 feet long sand box filled with gravel, while  

7) Report perceived exertion 

8) Repeat steps 5) and 6) until perceived exertion at level 5 (CR10 scale) 

9) Repeat steps 2) through 4) 
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Effective performance time over the test session (without the breaks) was regularly less than 

2 hours (table 15). Data collection could have been interrupted or ended prematurely, at any 

point in time in case that subjects experience discomfort, pain or tiredness. In cases that 

subjects needed to test glucose levels and take their personal medication, this could have been 

easily accommodated as well. Exhaustion was assessed according to the RPE scale. In the case 

that a test would have to be aborted, the data that had been collected up to this point would 

have been included in the analysis. Participants were compensated with US$ 100. 

Table 5: Timeline of data collection session 

Protocol 
steps Subject Time/min 

1 Read and sign consent form 10 

2 Report RPE (0-10) 5 

3 Doff Prosthesis 5 

4 Complete AAS, while prosthesis is modified 60 

5 Don prosthesis 5 

6 Put on HR watch, markers and EMG sensors 30 

7 Maximal Voluntary Contractions 10 

8 Marker calibration 5 

9 Walk in lab, Gait data collection by MA system and ipecs 10 

10 Prosthesis adjustment (+2 deg plantarflexion) 5 

11 Walk in lab, data collection 10 

12 Prosthesis adjustment (back to neutral) 5 

13 Walk loop until RPE = 5 (data collection) 60 

14 Prosthesis adjustment (+2 deg plantarflexion) 5 

15 Walk in lab (data collection) 10 

16 Doff Prosthesis, remove markers, EMG, HR watch 20 

17 Don prosthesis, after re-modification to original 5 

18 Receive compensation  

   

 Total time in minutes: 260 
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7 Appendix B: Data tables 

Extracted gait analysis curve parameters for all 10 subjects are listed in the following tables. 

Data were collected during one step cycle in every condition. Units are degrees for angles, Nm 

for moments and cm for step length. Timing of the peaks is normalized to percent of the overall 

gait cycle from heel contact to subsequent heel contact. The combined indices contain 

kinematics and kinetics data respectively, as defined in table 2. 
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Tables 16-25: Extracted gait analysis data and computed asymmetry indices for all subjects 

subject 1 Prosthesis right sound leg left Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 71.395 69.866 68.299 70.888 70.105 66.006 69.970 68.676 0.018 0.057 0.024 0.032 

% time of max 71 75 72 71 73 77 74 75 0.028 0.026 0.027 0.055 

max dorsiflex 10.034 9.361 10.823 10.524 8.26 6.589 9.846 8.576 0.194 0.348 0.095 0.204 

% time of max 50 52 52 53 49 50 51 47 0.020 0.039 0.019 0.120 

max plantarflex1 -8.579 -7.701 -5.333 -10.701 -3.017 -3.809 -3.993 -6.244 0.959 0.676 0.287 0.526 

% time of pflex1 9 12 8 16 9 11 8 9 0 0.087 0 0.560 

max plantarflex2 0.803 0.989 2.566 -3.784 -18.798 -19.433 -17.684 -19.421 2.178 2.214 2.679 1.348 

% time of  pflex2 66 71 70 69 64 68 66 66 0.031 0.043 0.059 0.044 

max knee 

moment 0.442 0.331 0.471 0.253 0.755 0.788 0.688 0.693 0.523 0.817 0.374 0.930 

% time of max 15 17 15 14 16 16 14 14 0.065 0.061 0.069 0 

max dorsiflex 

moment 1.314 1.238 1.206 1.279 1.301 1.273 1.353 1.281 0.010 0.028 0.115 0.002 

% time of max 46 49 48 46 48 50 48 50 0.043 0.020 0.000 0.083 

max plantarflex 

moment -0.251 -0.303 -0.274 -0.221 -0.303 -0.327 -0.324 -0.355 0.188 0.076 0.167 0.465 

% time of max 8 10 8 8 11 11 9 9 0.316 0.095 0.118 0.118 

STP % of cycle 60.000 62.857 60.952 63.462 61.321 64.423 61.905 63.462 0.022 0.025 0.016 0.000 

step length 80.400 75.317 75.839 75.635 63.011 68.901 70.687 67.454 0.243 0.089 0.070 0.114 

             

      

combined index (avg) 0.302 0.294 0.257 0.288 

      

combined kinematics 0.369 0.360 0.328 0.300 

      

combined kinetics 0.191 0.183 0.141 0.266 
 

       1
71
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subject 2 Prosthesis right sound leg left Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 68.816 68.582 73.900 80.429 69.523 67.267 65.674 64.102 0.010 0.019 0.118 0.226 

% time of max 71 72 70 69 73 75 75 73 0.028 0.041 0.069 0.056 

max dorsiflex 17.512 17.164 21.768 29.241 8.782 7.474 2.964 5.828 0.664 0.787 1.521 1.335 

% time of max 53 52 50 49 52 52 53 53 0.019 0 0.058 0.078 

max plantarflex1 -10.254 -10.958 -9.059 -8.616 -6.78 -8.461 -9.547 -9.336 0.408 0.257 0.052 0.080 

% time of pflex1 8 10 7 5 10 11 12 13 0.222 0.095 0.526 0.889 

max plantarflex2 -1.904 -3.501 0.383 5.699 -21.364 -25.506 -32.110 -27.850 1.673 1.517 2.048 3.029 

% time of  pflex2 69 69 66 80 67 69 69 67 0.029 0 0.044 0.177 

max knee 

moment 0.131 0.163 0.245 0.183 0.847 0.989 1.220 1.119 1.464 1.434 1.331 1.438 

% time of max 60 19 16 16 17 16 16 16 1.117 0.171 0 0 

max dorsiflex 

moment 1.426 1.435 1.421 1.186 1.532 1.585 1.901 1.862 0.072 0.099 0.289 0.444 

% time of max 48 48 46 46 52 52 52 52 0.080 0.080 0.122 0.122 

max plantarflex 

moment -0.095 -0.116 -0.068 -0.063 -0.309 -0.303 -0.486 -0.551 1.059 0.893 1.509 1.590 

% time of max 6 8 5 4 11 8 10 11 0.588 0 0.667 0.933 

STP % of cycle 64.463 64.167 58.929 59.292 66.393 66.957 66.667 64.286 0.029 0.043 0.123 0.081 

step length 68.281 74.328 75.117 77.924 69.255 75.233 73.724 80.820 0.014 0.012 0.019 0.036 

             

      

combined index (avg) 0.467 0.341 0.531 0.657 

      

combined kinematics 0.310 0.277 0.458 0.599 

      

combined kinetics 0.730 0.446 0.653 0.754 
 

      

 1
72
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subject 3 Prosthesis left sound leg right Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 64.985 59.901 61.959 60.133 65.654 58.671 62.531 60.51 0.010 0.021 0.009 0.006 

% time of max 76 79 72 78 73 71 75 69 0.040 0.107 0.041 0.122 

max dorsiflex 18.953 20.414 22.125 18.036 21.007 25.647 23.226 22.118 0.103 0.227 0.049 0.203 

% time of max 73 75 73 78 54 52 57 53 0.299 0.362 0.246 0.382 

max plantarflex1 -10.328 -15.649 -18.14 -10.585 -6.815 -4.73 -5.14 -4.19 0.410 1.072 1.117 0.866 

% time of pflex1 7 8 6 7 10 9 11 10 0.353 0.118 0.588 0.353 

max plantarflex2 -18.953 -20.414 -1.839 -18.036 -2.111 -1.799 -3.679 -1.102 1.599 1.676 0.667 1.770 

% time of  pflex2 73 75 63 78 71 69 80 69 0.028 0.083 0.238 0.122 

max knee 

moment 0.057 0.084 0.345 0.472 0.426 0.354 0.276 0.309 1.528 1.233 0.222 0.417 

% time of max 76 66 18 12 18 17 27 20 1.234 1.181 0.400 0.500 

max dorsiflex 

moment 1.324 1.259 1.079 1.188 0.888 1.02 0.969 0.857 0.394 0.210 0.107 0.324 

% time of max 54 56 51 57 49 49 52 49 0.097 0.133 0.019 0.151 

max plantarflex 

moment 0.005 0.01 0.009 -0.065 -0.28 -0.267 -0.245 -0.228 2.073 2.156 2.153 1.113 

% time of max 2 3 2 4 8 7 8 8 1.200 0.800 1.200 0.667 

STP % of cycle 67.391 70.629 64.138 70.769 64.706 62.162 66.923 62.687 0.041 0.128 0.042 0.121 

step length 64.419 70.961 77.135 55.113 69.552 69.648 63.549 62.791 0.077 0.019 0.193 0.130 

             

      

combined index (avg) 0.593 0.595 0.456 0.453 

      

combined kinematics 0.296 0.381 0.319 0.408 

      

combined kinetics 1.088 0.952 0.684 0.529 
 

      

 1
73
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subject 4 Prosthesis right Prosthesis left Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 64.255 59.585 53.891 61.923 58.847 55.981 59.617 60.050 0.088 0.062 0.101 0.031 

% time of max 69 73 73 67 75 74 78 77 0.083 0.014 0.066 0.139 

max dorsiflex 19.622 18.355 16.057 24.202 20.374 18.64 16.769 22.080 0.038 0.015 0.043 0.092 

% time of max 52 54 51 48 54 54 58 56 0.038 0 0.128 0.154 

max plantarflex1 -6.743 -8.111 -6.564 -0.876 -4.713 -7.699 -9.028 -3.200 0.354 0.052 0.316 1.140 

% time of pflex1 9 12 9 4 6 10 10 13 0.400 0.182 0.105 1.059 

max plantarflex2 2.123 0.466 2.258 6.277 5.104 2.288 2.477 7.524 0.825 1.323 0.093 0.181 

% time of  pflex2 65 69 69 63 68 69 72 72 0.045 0 0.043 0.133 

max knee 

moment 0.573 0.529 2.661 2.561 0.614 0.147 3.566 4.009 0.069 1.130 0.291 0.441 

% time of max 57 59 67 64 23 29 75 91 0.850 0.682 0.113 0.348 

max dorsiflex 

moment 1.202 1.221 0.593 0.409 1.045 0.093 0.276 4.905 0.140 1.717 0.730 1.692 

% time of max 52 54 39 52 55 51 61 95 0.056 0.057 0.440 0.585 

max plantarflex 

moment -0.354 -0.455 -0.256 -0.283 -0.412 -0.138 -0.494 -0.417 0.151 1.069 0.635 0.383 

% time of max 11 14 90 66 10 10 27 61 0.095 0.333 1.077 0.079 

STP % of cycle 65.693 65.957 63.816 60.000 66.165 64.964 73.203 68.276 0.007 0.015 0.137 0.129 

step length 59.558 59.070 56.221 55.466 60.904 58.963 53.041 57.884 0.022 0.002 0.058 0.043 

             

      

combined index (avg) 0.204 0.416 0.273 0.414 

      

combined kinematics 0.190 0.167 0.109 0.310 

      

combined kinetics 0.227 0.831 0.547 0.588  1
74
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subject 5 Prosthesis right Prosthesis left Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 66.917 78.338 80.466 82.920 74.233 74.737 82.854 71.673 0.104 0.047 0.029 0.146 

% time of max 72 73 71 77 74 75 73 78 0.027 0.027 0.028 0.013 

max dorsiflex 19.437 16.805 22.504 17.804 15.633 13.753 16.112 12.957 0.217 0.200 0.331 0.315 

% time of max 50 55 48 58 53 54 51 57 0.058 0.018 0.061 0.017 

max plantarflex1 -2.378 -5.252 -5.854 -7.045 -4.545 -6.463 -8.43 -7.824 0.626 0.207 0.361 0.105 

% time of pflex1 6 9 8 9 9 10 11 12 0.400 0.105 0.316 0.286 

max plantarflex2 4.247 4.256 6.020 4.481 1.372 -1.609 -2.815 -2.778 1.023 4.431 5.513 8.525 

% time of  pflex2 73 80 65 80 74 71 70 74 0.014 0.119 0.074 0.078 

max knee 

moment 2.219 2.189 2.629 2.02 3.306 2.749 3.061 2.560 0.393 0.227 0.152 0.236 

% time of max 99 65 43 59 9 64 48 65 1.667 0.016 0.110 0.097 

max dorsiflex 

moment 3.653 0.737 0.009 0.632 3.114 0.489 0.01 0.399 0.159 0.405 0.105 0.452 

% time of max 99 39 22 47 25 36 27 41 1.194 0.080 0.204 0.136 

max plantarflex 

moment -1.938 -0.195 -0.824 -0.004 -0.624 -0.196 -0.564 -0.002 1.026 0.005 0.375 0.667 

% time of max 67 68 37 96 7 24 42 95 1.622 0.957 0.127 0.010 

STP % of cycle 66.667 67.521 63.107 70.175 62.879 68.033 66.000 71.818 0.058 0.008 0.045 0.023 

step length 64.816 60.975 79.763 53.907 63.823 60.738 81.011 68.471 0.015 0.004 0.016 0.238 

             

      

combined index (avg) 0.538 0.428 0.490 0.709 

      

combined kinematics 0.254 0.517 0.677 0.975 

      

combined kinetics 1.010 0.281 0.179 0.266  1
75
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subject 6 Prosthesis right sound leg left Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 65.537 62.141 65.226 61.493 60.473 58.530 59.968 56.941 0.080 0.060 0.084 0.077 

% time of max 70 70 70 71 71 72 70 71 0.014 0.028 0 0 

max dorsiflex 16.217 14.145 16.778 14.048 4.409 1.806 13.544 10.004 1.145 1.547 0.213 0.336 

% time of max 50 51 48 48 49 50 48 48 0.020 0.020 0 0 

max plantarflex1 -4.296 -5.360 -3.211 -3.801 -11.107 -11.961 -5.770 -4.652 0.884 0.762 0.570 0.201 

% time of pflex1 7 9 6 9 9 12 7 8 0.250 0.286 0.154 0.118 

max plantarflex2 -1.306 -2.885 -4.622 -4.869 -29.793 -29.708 -17.899 -16.012 1.832 1.646 1.179 1.067 

% time of  pflex2 64 66 66 68 66 67 65 66 0.031 0.015 0.015 0.030 

max knee 

moment 2.448 2.624 2.642 2.811 2.132 2.354 1.678 2.932 0.138 0.108 0.446 0.042 

% time of max 59 60 46 50 59 61 57 46 0 0.017 0.214 0.083 

max dorsiflex 

moment 0.780 0.764 0.467 0.446 0.793 0.735 0.410 0.607 0.017 0.039 0.130 0.306 

% time of max 52 53 40 39 50 50 49 38 0.039 0.058 0.202 0.026 

max plantarflex 

moment -0.403 -0.406 -0.005 -0.188 -0.623 -0.604 -0.184 -0.091 0.429 0.392 1.894 0.695 

% time of max 21 24 26 53 22 23 61 52 0.047 0.043 0.805 0.019 

STP % of cycle 63.793 65.873 67.308 63.793 66.087 64.754 62.376 61.818 0.035 0.017 0.076 0.031 

step length 77.948 75.413 82.828 75.097 76.025 74.256 75.631 75.487 0.025 0.015 0.091 0.005 

             

      

combined index (avg) 0.312 0.316 0.380 0.190 

      

combined kinematics 0.432 0.440 0.238 0.187 

      

combined kinetics 0.112 0.109 0.615 0.195  1
76
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subject 7 Prosthesis left sound leg right Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 63.118 62.461 68.209 62.677 74.503 61.623 59.622 60.131 0.165 0.014 0.134 0.041 

% time of max 74 73 75 74 69 73 74 73 0.070 0 0.013 0.014 

max dorsiflex 14.671 11.406 9.445 14.519 14.167 12.015 16.183 20.588 0.035 0.052 0.526 0.346 

% time of max 54 51 54 52 31 35 50 40 0.541 0.372 0.077 0.261 

max plantarflex1 -10.318 -9.032 -9.035 -23.498 -5.115 -7.092 -7.783 -8.171 0.674 0.241 0.149 0.968 

% time of pflex1 10 8 9 13 11 9 11 7 0.095 0.118 0.200 0.600 

max plantarflex2 -10.879 -19.424 -16.397 -55.361 -4.363 -3.740 -3.062 -3.964 0.855 1.354 1.371 1.733 

% time of  pflex2 70 67 69 69 63 66 67 72 0.105 0.015 0.029 0.043 

max knee 

moment 0.366 0.55 0.654 0.572 0.759 0.478 0.377 0.741 0.699 0.140 0.537 0.257 

% time of max 16 16 17 16 25 23 18 22 0.439 0.359 0.057 0.316 

max dorsiflex 

moment 1.260 1.586 1.334 0.455 1.762 1.691 1.710 1.718 0.332 0.064 0.247 1.162 

% time of max 51 49 51 49 45 47 47 47 0.125 0.042 0.082 0.042 

max plantarflex 

moment -0.348 -0.346 -0.448 -0.138 -0.394 -0.387 -0.495 -0.452 0.124 0.112 0.100 1.064 

% time of max 9 8 8 9 10 9 9 9 0.105 0.118 0.118 0 

STP % of cycle 65.000 63.492 65.185 63.566 58.779 62.500 61.314 62.500 0.101 0.016 0.061 0.017 

step length 76.001 80.611 92.366 84.142 81.150 82.740 87.537 75.908 0.066 0.026 0.054 0.103 

             

      

combined index (avg) 0.283 0.190 0.235 0.435 

      

combined kinematics 0.271 0.221 0.261 0.412 

      

combined kinetics 0.304 0.139 0.190 0.474  1
77
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subject 8 Prosthesis left sound leg right Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 55.876 54.022 62.599 59.525 58.841 66.318 64.099 60.071 0.052 0.204 0.024 0.009 

% time of max 73 73 76 72 72 69 72 70 0.014 0.056 0.054 0.028 

max dorsiflex 11.988 6.680 10.777 8.567 12.121 12.206 11.041 11.911 0.011 0.585 0.024 0.327 

% time of max 51 51 53 50 52 49 52 48 0.019 0.040 0.019 0.041 

max plantarflex1 -9.937 -10.072 -10.562 -8.403 -6.164 -4.794 -9.944 -6.745 0.469 0.710 0.060 0.219 

% time of pflex1 8 11 8 9 11 9 10 9 0.316 0.200 0.222 0 

max plantarflex2 -17.663 -21.410 -19.928 -18.719 -4.379 0.146 -5.153 -3.624 1.205 2.027 1.178 1.351 

% time of  pflex2 68 68 71 67 71 70 68 66 0.043 0.029 0.043 0.015 

max knee 

moment 0.832 0.869 1.000 0.828 0.065 0.102 0.188 0.127 1.710 1.580 1.367 1.468 

% time of max 13 14 13 13 15 57 16 58 0.143 1.211 0.207 1.268 

max dorsiflex 

moment 1.414 1.407 1.320 1.533 1.523 1.451 1.377 1.402 0.074 0.031 0.042 0.089 

% time of max 48 50 51 49 47 45 47 45 0.021 0.105 0.082 0.085 

max plantarflex 

moment -0.143 -0.199 -0.288 -0.237 -0.090 -0.065 -0.233 -0.131 0.455 1.015 0.211 0.576 

% time of max 6 8 7 6 6 4 7 6 0 0.667 0 0 

STP % of cycle 64.486 65.455 68.317 63.810 62.264 58.879 60.952 59.804 0.035 0.106 0.114 0.065 

step length 85.075 73.284 62.646 67.027 83.304 68.198 73.592 79.478 0.021 0.072 0.161 0.170 

             

      

combined index (avg) 0.287 0.540 0.238 0.357 

      

combined kinematics 0.219 0.403 0.190 0.222 

      

combined kinetics 0.401 0.768 0.318 0.581  1
78
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subject 9 Prosthesis left sound leg right Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 62.662 60.965 56.491 63.123 63.223 60.763 63.842 65.063 0.009 0.003 0.122 0.030 

% time of max 73 73 73 73 72 70 70 70 0.014 0.042 0.042 0.042 

max dorsiflex 6.589 8.752 7.545 10.465 12.961 11.788 14.056 14.510 0.652 0.296 0.603 0.324 

% time of max 49 46 46 48 51 48 47 49 0.040 0.043 0.022 0.021 

max plantarflex1 -5.532 -3.966 -14.254 -1.394 -5.219 -4.531 -3.574 -2.812 0.058 0.133 1.198 0.674 

% time of pflex1 10 11 12 6 11 11 8 7 0.095 0 0.400 0.154 

max plantarflex2 -21.857 -18.335 -18.951 -22.584 -1.027 -1.771 0.397 -0.733 1.820 1.648 2.086 1.874 

% time of  pflex2 67 67 66 67 70 71 71 69 0.044 0.058 0.073 0.029 

max knee 

moment 0.42 0.753 0.459 0.636 0.282 0.299 0.427 0.345 0.393 0.863 0.072 0.593 

% time of max 14 16 15 13 58 57 54 56 1.222 1.123 1.130 1.246 

max dorsiflex 

moment 1.238 1.369 1.188 1.337 1.377 1.349 1.445 1.388 0.106 0.015 0.195 0.037 

% time of max 48 48 49 48 49 47 46 47 0.021 0.021 0.063 0.021 

max plantarflex 

moment -0.159 -0.286 -0.214 -0.11 -0.238 -0.232 -0.246 -0.139 0.398 0.208 0.139 0.233 

% time of max 6 9 7 5 9 9 7 6 0.400 0 0 0.182 

STP % of cycle 61.905 61.765 60.396 62.105 63.551 62.136 60.396 61.386 0.026 0.006 0 0.012 

step length 60.674 73.331 72.921 70.912 72.316 71.000 73.053 67.269 0.175 0.032 0.002 0.053 

             

      

combined index (avg) 0.342 0.281 0.384 0.345 

      

combined kinematics 0.293 0.226 0.455 0.321 

      

combined kinetics 0.423 0.372 0.267 0.385  1
79
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subject 10 Prosthesis right sound leg left Asymmetry 

 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

PRE/ 

NORM PRE/PF 

POST/ 

NORM POST/PF 

max knee flex 64.305 58.808 66.740 67.465 71.211 67.252 62.151 68.124 0.102 0.134 0.071 0.010 

% time of max 70 81 70 70 74 74 72 73 0.056 0.090 0.028 0.042 

max dorsiflex 11.035 9.56245 14.312 12.528 17.589 15.446 20.726 21.991 0.458 0.471 0.366 0.548 

% time of max 51 49 48 49 54 55 49 50 0.057 0.115 0.021 0.020 

max plantarflex1 -7.098 -13.4776 -1.756 -4.804 -12.662 -11.782 -6.289 -7.444 0.563 0.134 1.127 0.431 

% time of pflex1 9 9 6 8 7 11 7 7 0.250 0.200 0.154 0.133 

max plantarflex2 -0.529 -2.6326 4.060 1.321 -9.864 -14.561 -10.901 -6.601 1.796 1.388 4.374 3.001 

% time of  pflex2 67 68 69 66 68 69 67 68 0.015 0.015 0.029 0.030 

max knee 

moment 0.187 0.314 0.294 0.181 0.565 0.435 0.447 0.412 1.005 0.323 0.413 0.779 

% time of max 60 17 10 13 15 18 16 16 1.200 0.057 0.462 0.207 

max dorsiflex 

moment 1.700 1.556 1.919 1.706 1.817 1.5 1.645 1.392 0.067 0.037 0.154 0.203 

% time of max 47 48 45 46 52 53 48 49 0.101 0.099 0.065 0.063 

max plantarflex 

moment -0.151 -0.106 -0.145 -0.242 -0.285 -0.312 -0.067 -0.101 0.615 0.986 0.736 0.822 

% time of max 7 67 4 6 7 10 3 5 0 1.481 0.286 0.182 

STP % of cycle 61.111 62.931 60.577 58.182 64.815 65.179 62.037 62.500 0.059 0.035 0.024 0.072 

step length 84.916 79.204 88.900 91.170 76.900 76.806 83.167 82.162 0.099 0.031 0.067 0.104 

             

      

combined index (avg) 0.403 0.350 0.523 0.415 

      

combined kinematics 0.345 0.261 0.626 0.439 

      

combined kinetics 0.498 0.497 0.352 0.376  1
80
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8 Appendix C: Equivalent text descriptions 

 

In an effort to make documents universally accessible, written descriptions of graphic elements 

are included. The intention is to accommodate the requirements of individuals with vision 

impairments, with cognitive or perceptual limitations, non-native English speakers, or generally 

of readers who have difficulties in completely understanding the purpose of a graphic or picture. 

Figure 1 (page 2): “Illustration of alignment effects on prosthesis performance levels. Many 

assessment methods allow the identification of an acceptable level, but fail to answer the 

question for the (possible) optimum setting.” 

The figure shows a coordinate system with one bell shaped graph. The horizontal axis is labeled 

“Alignment setting (e.g. ankle plantar-flexion)” and has units from ”-8deg” to ”+12 deg”. The 

vertical axis is labeled “Prosthesis performance” and has no units. The upper half of the graph 

area – equivalent with high prosthesis performance is shaded in a different color than the lower 

part. The bell curve is within this upper area for values of approximately 0 to +8 deg. An arrow 

signifies this range as “acceptable”. Another arrow points at the pinnacle of the bell curve which 

is at an Alignment setting value of about +3 deg  

Figure 2 (page 3): “Schematic of the iterative alignment process in the clinic. Center piece is 

the assessment of gait that depends on visual observation and patient's feedback.” 

The figure shows a rather busy flow-chart, that illustrates the complexity and subjectivity of the 

task of prosthetic alignment. A flow-chart with 14 boxes is shown. The initial field contains 

information on the state of a prosthesis prior to alignment optimization: It has been produced to 

measure and assembled according to default recommendations. The alignment optimization 

procedure starts with “Donning of the prosthesis”, followed by “Visual check of socket fit”. If 
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acceptable “Standing up” follows”, as well as the (possible)”Use of LASAR posture” to check the 

initial alignment. If standing is safe, “walking” commences, if unsafe “Walking in parallel bars”. 

Either is accompanied by “Observation” and Solicitation of “Patient’s feedback”. If the thus 

determined performance is optimal, the goal is accomplished and the prosthesis is being 

finished. In the case of unsufficient performance, Steps that include “Correct obvious alignment 

flaws”, “adjust component settings”, and “if necessary, improve socket fit” are required. The 

latter results in “Doffing of prosthesis, socket rectification”, which is also called for when at the 

initial donning no acceptable socket fit was determined. 

Figure 3 (page 10): “Extension of the test environment and inclusion of mobile sensors allows 

for a more comprehensive assessment of amputee gait than the traditional way of observing 

gait patterns in the laboratory.”  

A cake diagram in rectangular shape consists of three major blocks pertaining to the different 

components of gait analysis:  1) Kinematics, 2) Forces and Moments, and 3) Muscle Activity. 

Another division splits the three blocks into subsections at approximately a 1 to 2 ratio: 

“Laboratory” and “Real Life Conditions”. This makes a total of 6 sections (2 per block), some of 

which are labeled. According to that, Kinematics in the Laboratory are “observable by 

prosthetist (subjective assessment)”, and both Kinematics and Forces & Moments in the 

Laboratory are “objectively measurable with Motion Analysis and Force plate equipment”. 

Forces and Moments in both laboratory and real life conditions are “measurable with integrated 

sensors”, as is muscle activity with “wireless EMG equipment”. 

Figure 4 (page 15): “Complete Cleveland Clinic marker set, from KinTools RT for Cortex User's 

Manual (Motion analysis 2010).”  
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The image shows two views of a skeleton and muscle model of a male adolescent in upright 

standing position holding the arms on the sides, palms facing forward. On the left is a front view 

and on the right a back view. Black dots mark the points where reflective markers for gait 

analysis purposes are to be placed according to the Cleveland clinic protocol. All the points are 

labeled with the respective name of the marker, usually pertaining to the position, such as 

“R.Foot.Lateral” or “L. Anterior.Shoulder”. 

Figure 5 (page 17): “Preparation of prosthesis prior to data collection. The integrated sensor 

under the socket was used for additional data collection that is not reported in this paper. 

Plumb lines on the socket allow maintenance and reconstitution of the original alignment 

setting.”  

This photo was taken during the static assembly procedure of a prosthesis. A trans-tibial 

prosthesis is seen set up in the alignment frame from figure 7 in a side-view. The plumb lines are 

marked on the prosthetic socket by pencil lines. This demonstrates the principle of using the 

parallel strings on opposite sides of the alignment device for the avoidance of parallaxes errors. 

Figure 6 (page 19): “Illustration of landmark data points used for analysis of gait curves. 

Magnitude and timing of the marked peaks were evaluated”  

Three graphs are displayed in vertical order. The horizontal axes are marked “% of step cycle” 

and range from values of 0 to 100. The vertical axes are labeled “knee flexion angle (degrees)”, 

“Ankle angle/degrees (plantarflexion negative)”, and “Ankle flexion moment (Nm/N 

bodyweight)” respectively. Each graph shows a typical curve for the respective variable. All 

curves start and end at zero values. The upper curve has a local maximum of about 15 degrees 

at 20% gait cycle, a local minimum of 0 at 45%, and a global maximum of 60 degrees at 75% gait 

cycle. The latter is marked with “Max knee flex”. The second curve has a maximum of 12 
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degrees at 50% gait cycle, labeled “Max dorsiflex”, and two minima of -10 degrees and -17 

degrees at 10% and 75% of the gait cycle respectively. Those are labeled “Max plantarflex 1” 

and “Max plantarflex 2”. There is another local maximum of about 3 degrees at the 95% mark 

that is not labeled. The last curve has a minimum of -0.1 at 5% and a maximum of 1.4 at 50% 

gait cycle, after which the curve reaches zero value at about 65% and remains there. The 

extrema are labeled “Max plantarflex moment” and “Max dorsiflex moment” 

Figure 7 (page 23): “Step length asymmetry means and standard deviations over the four 

tested walking conditions. Differences between PRE/NORM and PRE/PF, as well as between 

PRE/PF and POST/PF are significant at the .05 level.” 

A bar graph with four vertical bars is shown. Error bars show the standard deviations. On the 

horizontal axis the four conditions “PRE/NORM”, “PRE/PF”, “POST/NORM”, and “POST/PF” are 

listed. The vertical axis shows step length asymmetry as a unit-less index, ranging from 0 to 0.18. 

The bars for PRE/NORM and POST/NORM are almost identical with a value of 0.08. The bar 

PRE/PF between them is clearly shorter with a value of 0.03, and the bar POST/PF on the right is 

longer with a value of about 1.0. Standard deviations are generally of the same magnitude as 

the value represented by the respective bar. 

Figure 8 (page 27): “Individual asymmetry indices for all 8 subjects. Perfect bilateral symmetry 

would be represented by an index value of 0. Indices are comprised of gait variables as defined 

in table 2. One step per subject and condition was analyzed.” 

This figure shows an assembly of eight bar graphs, each of which showing four groups of three 

bars. The eight graphs represent the eight subjects that were tested, the four groups are the 

four conditions, and the three bars are the three asymmetry indices, being “overall index”, 

“kinematics index” and “kinetics index”. There is no consistent trend recognizable, neither is a 
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consistent magnitude of the indices. Some subjects have rather low overall asymmetry, barely 

reaching levels of .4, whereas others’ exceed values of 1. Some subjects have big differences 

between conditions or between kinematics and kinetics indices, and some have not. Overall, the 

figure conveys the notion that the subject population was very heterogeneous. 

Figure 9 (page 28): “Comparison of asymmetry indices, averaged over all 8 subjects. Perfect 

bilateral symmetry would be represented by an index value of 0. Indices are comprised of gait 

variables as defined in table 7. Error bars illustrate the variance over the sample.”  

This bar chart lists the four experimental conditions next to each other on the horizontal axis. 

The bilateral asymmetry index is represented by the vertical axis, ranging from 0 to 0.6. The 

overall asymmetry index is roughly constant over all four conditions “PRE/NORM”, “PRE/PF”, 

“POST/NORM”, and “POST/PF” at a value of about .4 and a small standard error bar in both 

directions. The kinematics index is slightly lower than the overall index. It is almost identical for 

the two “PRE” conditions at about .3, and is about .35 for both “POST” conditions. Error bars are 

small as well. The kinematics index is higher than the others at about .45. In the “PRE/NORM” 

condition it is slightly higher than that, and in the “POST/NORM” condition slightly lower. Its 

error bars are considerably greater than for the other indices, spanning a range of .2 in the first 

and .08 in the last condition  

Figure 10 (page 29): “Ankle flexion angle curves for prosthetic and sound leg over one step 

cycle for one subject (number 8), measured by conventional gait analysis. Steps have been 

normalized to the step cycle duration and offset values corrected for comparability. To 

illustrate the 2x2 design matrix, the PRE condition of low exertion is displayed in the top row, 

POST condition of “strong” exertion below, normal alignment in the left column, altered 

alignment in the right.” 
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 Four diagrams represent the four experiemental conditions “PRE/NORM”, “PRE/PF”, 

“POST/NORM”, and “POST/PF”, are showing “% of gait cycle” on the horizontal axis, ranging 

from 0 to 100, and “Ankle angle/degrees (plantarflexion negative)” on the vertical axis, ranging 

from -15 to +25.In each diagram, two function graphs are visible, one for the sound leg, and one 

for the prosthetic leg. They run parallel for about the first 30 % of the gait cycle, where they 

show a local minimum of about 3 degrees before climbing up to 13 degrees. The prosthetic 

curve keeps climbing after that, and reaches its global maximum of 20 degrees at about 50% of 

the gait cycle. The sound leg curve reaches only about 15 degrees at that point. Between 50 and 

70 % both curves point downward, the prosthetic leg reaching a plateau at 12 degrees, and the  

sound leg reaching its global minimum at -12 degrees. After that point, the curves inlines 

rapidly, reaches + 5 degrees at the 80% mark and goes on to end on the same level of 7 degrees 

as the prosthesis curve. Between conditions there are slight deviations of the curve shapes, but 

the general fact, that the prosthetic ankle is very limited in its dorsi-flexion during the push-off 

phase is visible throughout. 

Figure 11 (page 36): “Prosthetic ankle moments measured with normal alignment, and with by 

two degrees increased plantar-flexion alignment (sample from subject 10). Although maxima 

and times of maximum are almost identical, the shape of the curves is not the same.”  

This diagram shows the “% of gait cycle” on the horizontal axis, ranging from 0 to 100, and 

“Ankle moment in NM/lbs body weight (plantar flexing moment is negative)” on the vertical 

axis, ranging from -.5 to +2. Two curves are displayed, one for “normal alignment”, and one for 

“increased plantar flexion”. The are for the most part almost identical, but have an obvious 

deviation from each other in the first 20% of the gait cycle. The normal alignment curve points 

downward after starting at 0, and reaches about -.2 at 7% before climbing up rapidly and 
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reaching +.6 at the 20% mark. The increased plantar flexion curve, also starting at 0, points 

upward immediately und reaches +.6 already at the 10% mark. 

Figure 12 (page 37): “Visualization of bilateral ankle moment differences across all 8 subjects. 

Dotted lines mark the standard deviation envelope.”  

This diagram shows the “% of gait cycle” on the horizontal axis, ranging from 0 to 100, and 

“Ankle moment in NM/lbs body weight (negative = plantar flexing)” on the vertical axis, ranging 

from -.5 to +2. Two curves are displayed, one for “normal alignment”, and one for “increased 

plantar flexion”, each together with its standard deviation. The average curves are mostly 

identical, apart from the increasing compartment between 15% and 50%, where the sound leg’ 

values are by .2 units lower than the prosthesis’ values. Standard deviations are in the range of 

about .4 units for large stretches, enveloping the average curve of the respective other 

condition consistently. 

Figure 13 (page 47): “Sample data of the longitudinal force curve that was used to identify 

step cycles of interest. After standing on both legs for the first ten seconds of this sample, the 

subject started walking by lifting the prosthesis at about 0:00:39. The corresponding video 

data shows that the fifth step on the prosthesis side hit the force plate. This step cycle can be 

found by counting the intervals in the force graph. It is between 0:00:43 and 0:00:44.”  

This graphs shows the “recording time” on the horizontal axis, ranging from 0:00:28 to about 

0:00:52. The horizontal axis represents the “Force aling the prosthetic shin (N)”, ranging from -

200 to +1600. The function graph starts at a value of 500, which it maintains with some slight 

fluctuations until the 0:00:39 mark. There it rapidly decreases to 0, before climbing up to about 

1200, and after a double peak there recedes to 0 again, all within about 1 second. This one-
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second pattern continues with slight deviations until the end of the recording, totaling in 13 

such curves. 

Figure 14 (page 49): “Ankle moment of a sample step, measured by conventional gait analysis 

(dark line) and prosthesis integrated sensor (light)” 

 This diagram shows the “% of step cycle” on the horizontal axis, ranging from 0 to 100, and 

“Ankle flexion moment normalized to body weight” on the vertical axis, ranging from -1 to +2. 

Two curves are displayed, one for “ipecs”, and one for “forceplate” measurement. They are 

essentially identical, with a slight offset during the stance phase. The curves have minima of -.1 

and -.5 respectively at about 10%, and maxima of 1.7 and 1.4 respectively at 50%. They both 

reach 0 at close to 60% and remain there for the rest of the step cycle. 

Figure 15 (page 49): “Concurrent measurement of vertical force (e.g. Fz) in the prosthetic leg of 

Subject 10 during walking with low exertion, increased plantar flexion”  

This diagram shows the “% of step cycle” on the horizontal axis, ranging from 0 to 100, and 

“Vertical force/ body weight” on the vertical axis, ranging from -.2 to +1.4. Two curves are 

displayed, one for “ipecs”, and one for “forceplate” measurement. They are essentially identical, 

with a slight deviation during the first 50%. The curves each have two maxima of 1.2 and 1 at 

about 15%, and at 45%, and a local minimum of .8 in between. The ipecs curve reaches the first 

maximum slightly later, has a higher local minimum and a lower second maximum. 

Figure 16 (page 50): “Sample comparison of knee moment curves as computed by the 

integrated sensor algorithm (light line), and calculated manually (dark line), based on the 

moments and forces measured at the center of the ipecs, and the vertical distance between 

the center of the ipecs and the knee axis”  



www.manaraa.com

189 
 

 

This diagram shows the “% of step cycle” on the horizontal axis, ranging from 0 to 100, and 

“Knee flexion moment normalized to body weight” on the vertical axis, ranging from -1 to +3. 

Two curves are displayed, one for “ipecs”, and one for “forceplate” measurement. They are 

entirely different for most of the stance phase, where the forceplate curve describes a low 

double peak curve between values of -.3 and +.2, wheras the ipecs curve has peaks of +1 and 

+2.5.  

Figure 17 (page 50): “Normal gait knee flexion moment curve (from (C. M. Powers, Rao, & 

Perry, 1998) with permission). The vertical dashed line signifies the transition from stance to 

swing phase.”  

This diagram shows the “Percent (stride)” on the horizontal axis, ranging from 0 to 100, and 

Knee flexion moment on the vertical axis, ranging from -200 to +200 with no units. The 

displayed curve has local minima of -30 at about 5%, 45% and 90%. Local maxima are 100 at 20% 

and 30 at 60%. 

Figure 18 (page 55): “Graphical representation of changes in sampling frequency over the 

course of a continuous recording with the iPecs sensor.”  

This graph has “Recording time/s” on the horizontal axis, ranging from 0 to 1040 and “Ipecs 

sampling frequency/Hz” on the vertical axis, ranging from 0 to 300. There are 16 discrete data 

points, connected by straight lines. The resulting plot shows an irregular trajectory including 

values between 250  and about 160. 

Figure 19 (page 64): “Illustration of statistical analyses conducted for this study” 

This illustration tries to visualize the data extraction and analysis method. A table shows that for 

each subject ten step samples (of vertical force and ankle flexion moment) were collected for 

each of the four conditions “PRE/NORM”, “PRE/PF”, “POST/NORM”, and “POST/PF”. Each of 



www.manaraa.com

190 
 

 

those samples was normalized to 100 data points. Then landmark variables were extracted, and 

within group standard deviations computed. Two different statistics were employed to compare 

those variables: A MANOVA to compare condition differences within individual subjects, and 

RMANOVA to compare conditions across subjects. Small data plots illustrate the nature and 

multitude of data sets. Arrows  and brackets are used to connect the statistical methods with 

the respective raw data in the table. 

Figure 20 (page 65): “Graphical representation of ankle flexion moments in one subject. 10 

steps of each condition have been time normalized to compute averages and standard 

deviations at every point in time. The solid line in any one curve represents the average, and 

the lighter area above and below the standard deviation.”  

This diagram shows four ankle moment curves in a 2 by 2 array, each representing a different 

condition. From left to right and up to down they are “Low exertion/normal alignment”, “Low 

exertion/increased plantar flexion”, “Strong exertion/normal alignment”, and “Strong 

exertion/increased plantar flexion”. The curves all have similar shapes but appear to have some 

deviations from each other.  

Figure 21 (page 66): “Superposition of the ankle moment curves from figure 20.”  

In this diagram, all four ankle moment curves and their respective standard deviation envelopes 

are displayed in the same coordinate system. It can be seen, that they are not identical, as there 

seems to be a temporal shift between some of them. 

Figure 22 (page 68): Ankle moment comparison in subject 6. Averages of 10 steps with the 

misaligned prosthesis are plotted, once before the exertion protocol, and once after. 

The figure shows a diagram with “% gait cycle” on the horizontal axis, ranging from 0 to 100, and 

“Ankle flexion moment (Nm/N bodyweight)” on the vertical axis ranging from -0.06 to +0.12. 
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There are two curves plotted, one labeled “avg (PRE/PF), the other labeled “avg (POST/PF)”. 

Both curves are widely similar, starting at 0, having a global minimum of  about -0.05 at 10% gait 

cycle, a global maximum of about 0.11 at 50% gait cycle, and a plateau at the level of 0 between 

65% und 100% gait cycle, thus looking much like typical ankle moment curves. The slight 

differences between the curves occur on the inclining aspect of the curve, where the “POST” 

curve is initially ahead of the “PRE” curve by 1 or 2 % gait cycle, before it crosses over at the 

level of +0.03, and stays behind the PRE curve by 1 or 2 % gait cycle for the rest of the incline. 

 Figure 23 (page 69): Longitudinal shin force in subject 6, compared between conditions 

PRE/PF and POST/PF. 10 steps each were normalized to 100 samples and averaged. 

The figure shows a diagram with “% gait cycle” on the horizontal axis, ranging from 0 to 100, and 

“Axial shin force (N/N bodyweight)” on the vertical axis ranging from -0.2 to +1.2. There are two 

curves plotted, one labeled “avg (PRE/PF), the other labeled “avg (POST/PF)”. Both curves are 

widely similar, starting at 0, having a global maximum of  about 1.1 at 15% gait cycle, a local 

minimum of 0.8 at 30% gait cycle, a local maximum of about 1.0  at 50% gait cycle, and a plateau 

at the level of 0 between 65% und 100% gait cycle, thus looking much like typical vertical force 

gait curves. The slight differences between the curves occur between the first maximum and the 

subsequent minimum, where the “POST” curve is ahead of the “PRE” curve by 1 or 2 % gait 

cycle. 

 Figure 24 (page 69): Longitudinal shin force in subject 7, compared between conditions 

PRE/PF and POST/PF. 10 steps each were normalized to 100 samples and averaged. 

This figure shows the same gait curves as figure 22 for a different subject. In this case the 

“POST” curve deviates from the “PRE” curve by having a less steep incline after the 5% gait cycle 

mark, thus reaching a lower first maximum with a value of 1.0 as opposed to 1.1 for the “PRE” 
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curve. It subsequently has also a less steep decline, resulting in a crossing over of the “PRE” 

curve and a local minimum of 0.8 as opposed to 0.7 for the “PRE” curve. The “POST” curve then 

inclines less steep than the “PRE” curve again, joining it at the second maximum value of roughly 

0.95. For the last 50% gait cycle both curves are basically identical. 

 Figure 25 (page 70): Longitudinal shin force in subject 8, compared between conditions 

PRE/PF and POST/PF. 10 steps each were normalized to 100 samples and averaged. 

This figure shows the same gait curves as figure 22 for a different subject. In this case the 

“POST” curve deviates from the “PRE” curve by having a less steep incline after the 10% gait 

cycle mark, thus reaching the first maximum with a value of 0.95 about 5% later in the gait cycle 

than the “PRE” curve. It also has a slightly higher local minimum of 0.85 as opposed to 0.8 for 

the “PRE” curve. The “POST” curve joins the “PRE” curve again at the second maximum (value of 

roughly 0.95). For the last 50% gait cycle both curves are basically identical. 

Figure 26 (page 71): “Comparison of longitudinal shin force over the step cycle at different 

levels of exertion for one subject (Subject 10). Curves are each averaged over samples of 10 

consecutive time normalized steps.”  

This diagram shows the “% of step cycle” on the horizontal axis, ranging from 0 to 100, and 

“longitudinal shin force normalized to body weight” on the vertical axis, ranging from -.2 to +1.4. 

Four curves are displayed, one for “start”, and one each for “after 1 lap”, “after 2 laps”, and 

“after 3 laps” respectively. They are essentially identical, with only slight deviations between 

10% and 70%. The curves each have two maxima of 1.2 and 1 at about 15%, and at 45%, and a 

local minimum of .7 in between. The curve “after 3 laps” appears to have the greatest deviations 

from the other curves, ranging in magnitude at about .1 units. 
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Figure 27 (page 71): “Comparison of ankle flexion moments over the step cycle at different 

levels of exertion for one subject (Subject 10). Curves are each averaged over samples of 10 

consecutive time normalized steps.”  

This diagram shows the “% of step cycle” on the horizontal axis, ranging from 0 to 100, and 

“Ankle flexion moment (Nm/N body weight)” on the vertical axis, ranging from -.1 to +.15. Four 

curves are displayed, one for “start”, and one each for “after 1 lap”, “after 2 laps”, and “after 3 

laps” respectively. They are essentially identical, with only slight deviations between 10% and 

70%. The curves each have a minimum of about -.05 at 8% and a maximum of +.14 at about 

50%. The curve “after 3 laps” appears to have the greatest deviations from the other curves, 

ranging in magnitude at about .02 units, with a less pronounced minima and maxima values. 

Figure 28 (page 72): “MANOVA effect sizes of exertion in the condition PF (increased plantar-

flexion). The variable "absolute increase in heart rate" shows a weak linear correlation to the 

effect size of exertion on ankle moment (R2 = .3156)” 

This figure shows a scatterplot. The horizontal axis reads “Increase in heart rate between PRE 

and POST exertion (bpm) and ranges from 0 to 90. The vertical axis is labeled Effect size eta 

squared of exertion and ranges from0.94 to 1. There are 8 points plotted with a linear trend line 

that inclines at an angle of about 30 degrees. 5 points are on the upper side of the trend line, 3 

on the lower side and in greater distance to it. The greatest distance to the line and the other 

points is the point at about (30; 0.95) that is referred to as “outlier” in the text. 

Figure 29 (page 86): “Average standard deviations of vertical force Fz (in N) and ankle flexion 

moment Mankle (in Nm) curve points in a 10-step sample, as a measure of in step variability in 

each subject over the intervention conditions” 
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An array of eight bar diagrams is shown, each representing on subject. In each diagram, four 

pairs of bars are displayed, color coded as “Fz” and “Mankle”. The four conditions are marked as 

“PRE/NORM”, “PRE/PF”, “POST/NORM”, and “POST/PF” respectively. The vertical axis shows the 

standard deviation over 10 steps, and ranges from 0 to 0.14. The magnitude of the Fz standard 

deviation is approximately 10 times greater than for the Mankle standard deviation. There 

appears to be some proportionality between both measures. Subjects vary in magnitude 

(ranging for Fz standard deviation from 0.04 in subject 7 to 0.13 in subject 9) and pattern of the 

bars. Subject 1 and subject 6 had the highest variability in condition one, and the lowest in 

condition 4. Subject 2 and 9 had their highest step variability in condition 2, and lowest in 

condition 4. This pattern is reversed in subjects 3 and 7. Subject 8 and subject 10 had the lowest 

variability in condition 3, and highest in either condition 2 (subject 8) or condition 4 (subject 10). 

Figure 30 (page 147): “Alignment mechanism of prosthesis modular adapter.”  

This figure shows the side view of the prosthetic foot and ankle assembly, partly sectioned. It 

can be seen how the adjustment of setscrews in the upper component of the assembly changes 

the angular orientation of the pylon adapter that connects the foot with the socket. Setscrews 

on opposite sides fixate the foot adapter that looks like the top part of an inverted pyramid. 

Simultaneously turning the screws in the same sense will not change the distance between 

them, but will move the pylon in which their thread is guided. This happens on a spherical 

support base, leading to an angular rather than translational change. 

Figure 31 (page 148): “Schematic of the walking path in and outside the laboratory building. 

Total length of the loop is 210 meters, 40 of which are outdoors.”  

A floor plan of the gait lab and the surrounding corridors and outdoor environments is shown. 

The rectangular gait lab features a stretch of “gravel path” and else “level lab floor”. The lab is 
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on three sides adjoined by a hallway that can be reached through a door from the lab. The 

hallway floor is partly carpeted and partly concrete. Two stairwells connect to the lower level, 

which also contains a sloped ramp. Exit doors on both ends of the corridor open up to an 

“asphalt path (outdoors)” that connects both doors on the fourth side of the gait lab. A dashed 

arrow marks the typical walking path to be absolved by the participants, including in a loop all 

the different surfaces and obstacles. 

Figure 32 (page 150): “Principle of strain gage assembly in iPecs.”  

This illustration reveals the inner structure of the integrated sensor. On the left is a photograph 

of a below knee prosthesis with the ipecs unit, a black cubic component approximately 2 inches 

square by 1.5 inches high, installed underneath the prosthetic socket. An arrow points from 

there to the center of the image, to a drawing of the internal structure, a short tube in vertical 

orientation, with a band of cross like patterns wrapped around it. This band is depicted rolled up 

underneath, which shows the assembly of strain gages in 8 groups of four, placed next to each 

other in alternating + and x orientation. One of those groups is enlarged at the right side of the 

figure, revealing a Wheatstone bridge wiring between them. 

Figure 33 (page 151): “Prosthesis alignment aid.”  

A structure made out of wood and strings is depicted. It consists of a rectangular base plate and 

a similar top plate, about 20 x 20 inches in dimension. They are connected by four upright bars 

of about 40 inches length in the corners. Strings are spanned in the centers of the open sides of 

the structure, three in each plane: one vertically, and two more in V-shaped fashion. 
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9 Appendix D: Short papers based on data collected for this work 

9.1 Gait Stability Measured by Prosthesis-Integrated Sensors as an Outcome 

Measure in Persons with Prostheses for the Lower Extremity 

Goeran Fiedler, Dipl. Ing (FH), CPO-D, Brooke A. Slavens, PhD, and Roger O. Smith, PhD, OT 

Department of Occupational Science and Technology Rehabilitation Research Design and 

Disability (R2D2) Center 

 (Presented at the 25th Annual Dean's Research Day. 2012. Kalamazoo, MI) 

9.1.1 Abstract 

Some of the major concerns in leg amputee rehabilitation are falls [1] or similar accidents 

attributed to impaired gait stability. Thus, the achieved gait stability is of great interest in 

assessing the functional outcome of a prosthetic fitting. Determining step-by-step variability, 

which has been used as a measure of gait stability [2,3], is usually restricted to few steps within 

the capture volume of a gait laboratory, posing limits to the available sample size. Artificial legs 

allow the integration of dedicated sensors directly into the weight bearing structure of the 

locomotor apparatus, enabling the capturing of specific information on step cadence, bilateral 

weight distribution, knee moments, and ankle moments continuously over long periods of time. 

Based on extensive data that we collected in the context of a larger study on amputee gait 

dynamics, we introduce first findings, propose methods of identifying and comparing distinct 

gait sequences, and discuss the limitations of this method.  

9.1.2 Background 

Limb amputation is among the most drastic and irreversible conditions that affect a patient’s 

physical integrity. In many cases, amputations become necessary due to vascular conditions, 

such as those resulting from diabetes. The reported annual incidence rate of trans-tibial 

amputation is about 13 in 100,000 Americans [4], and as the prevalence of diabetes and similar 
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lifestyle diseases is expected to rise in the future, estimations project the number of persons 

living with an amputation to double by the year 2050 [5]. Particularly in the therapy of lower 

extremity amputees, the necessity of artificial limbs is imperative. Sufficiently replacing the lost 

structure below the knee enables standing and ambulation without crutches, and furthermore 

facilitates the prevention of secondary ailments.  

For a variety of reasons, it is desirable to assess the effectiveness of a prosthetic device and 

the corresponding gait training in an accurate and practically applicable way. Among the tools 

that have been used to assess the quality of prosthetic fit and performance capabilities are 

questionnaires, pedometers, accelerometers, and motion analysis methods. Being limited to 

either subjective recollection, variables unspecific for gait performance, or reduced samples, all 

of those methods must fail to answer the questions that are most relevant for long-term 

outcomes.  

For many amputees, safety is the primary concern when it comes to ambulation on 

prostheses. Falls, or even the fear of falls, are known to severely affect the gait efficiency of 

prosthesis users. In order to prevent the undesirable consequences of accidental falls, an 

assessment method that predicts fall susceptibility before the falls actually happen is required. 

Another typical problem is overuse of the contra-lateral extremity due to pain or discomfort, 

which bears the risk of promoting comorbidities such as premature joint degeneration, muscle 

contractures, and spinal malpositions. Uneven weight distribution between legs would be a 

reasonable indicator of over-use. Among the relevant outcome criteria is also the ambulation 

speed, as this determines a patient’s capacity to move about in an efficient manner comparable 

to non-amputees. Detailed questions could address the walking speed in non-optimal situations, 

when for instance the surface is uneven, the lighting is insufficient, or the subject is preoccupied 

or distracted.  
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Recently, a new generation of integrated sensor units has become available, providing 

precise and extensive mobile data that – while initially intended to help investigate prosthetic 

hardware and alignment specifications - may well be useful in assessing these rehabilitation 

outcomes for amputees.  

9.1.3 Methods 

The “iPecs” (College Park Industries, Fraser, MI) is a research grade measuring tool that 

essentially consists of multiple arrays of strain gages, housed in a shell of 1.8” x 2.8” x 3.2”. The 

gages, four at a time, are connected in Wheatstone bridge circuits which are aligned in varying 

orientations within the structure. Based on a calibration matrix, the readings of those units are 

combined to output force and moment data. Knee and ankle joint moments are derived from 

the known location of the respective axes with respect to the center of the iPecs device, using 

transformation matrices [6]. Data is streamed wirelessly to a personal computer, or alternatively 

stored on a micro SD card within the unit. As long as the unit’s dimensions allow, it can be 

installed within the existing structure of most modular leg prostheses. In our studies, that 

procedure took up between 10 minutes and one hour per prosthesis. The additional weight is 

assumed to be no significant factor in the gait pattern, which was confirmed by the feedback 

our subjects voiced. In the context of our studies that investigated differences in gait 

biomechanics depending on the alignment of the prosthesis, as well as force and moment 

characteristics of prosthesis stair walking, and in two cases leg symmetry in bilateral amputee 

gait, subjects were asked to walk for about 20 minutes while data were continuously collected.  
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Figure 32: Illustration of iPecs measurements. Time base is one stance phase from heel contact to toe 
off during level walking at 1.69 m/s. 

Outputting tri-axial forces and moments within the sensor unit, as well as the derived joint 

moments, at sampling rates of up to 850 Hz, there is obviously a wealth of data available that 

needs to be reduced in order to extract the relevant information. Figure 34 shows a selection of 

three variables over the duration of one stance phase as measured by the integrated sensor.  

9.1.4 Preliminary results 

Scrutinizing the various gait curves available reveals some simple conclusions that can be drawn, 

and that can inform the above mentioned outcome assessment. Figure 35 shows a 1-minute-

sample of the Fz data, that is the axial force longitudinal to the shin, for one subject. This 

variable is especially well utilizable for the detection of gait events. It is easily recognizable, 

when the subject was sitting (when Fz is close to zero), walking (repeated typical vertical force 

curve), and standing (Fz at about 50% of maximum value). During the walking stage, steps can 
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be counted, step frequency, and consistency can be derived; the shape of the curve even 

indicates stair walking and the direction thereof. Subsequent evaluation of the stair walk curves 

can show whether the subject was performing an alternating technique, was placing the 

prosthetic foot right (the ankle moment can be interpreted to show the forefoot resistance 

applied by the stair step), used a handrail (peak forces are considerably higher without handrail 

use), and whether there were critical situations (e.g. large step-by-step variability).

 

Figure 33: Sample of axial shin force (Fz) over one minute of data collection. The 26 steps between time stamps 
3:30 and 4:00 correspond to a step frequency of 52/minute. The distance between consecutive peaks can be used 
to compute gait accelerations respective decelerations, and – together with other variables – step variability. 

While the Fz information helps identify specific gait situations, evaluation of stability can take 

into account other parameters as well. Figure 36 shows the step-by-step variability in different 

variables during up-stair walking, depending on handrail use. This data suggests that especially 

the deviation in knee moment increases when the handrail on the opposite side of the 

prosthesis is used. A possible explanation is the inconsistency in lateral foot placement that is 

possible only on the wall-averted side of the stairs.  

9.1.5 Discussion 

Internal sensor systems for prosthetic gait assessment add new options to the field of amputee 

rehabilitation outcomes measurement. In order to fully utilize the capabilities of this technology, 

efficient algorithms must be developed to reduce and analyze the considerable amount of 

information, and to translate it into useful quantitative metrics for clinical and rehabilitation 



www.manaraa.com

201 
 

 

assessment of lower extremity amputees. A limitation is given by the fact that only data from 

the prosthesis side can be collected. This delivers only half of the information of conventional 

gait analyses, while the other half has to be deducted by appropriate calculations and 

assumptions, and respective additional measures. Body weight distribution for instance can be 

derived from one legged data as long as the total body weight is known. An interesting variable 

that can be measured directly is step-by-step variability as an indicator of gait instability. This 

may be used to inform prosthetic prescription as well as training and therapy with the goal of 

reducing fall accidents, and overall improving gait efficiency and confidence in prosthesis users.  

 

Figure 34: Stair walking step-by-step variability in selected gait variables, depending on handrail side. 
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9.2 Influence of Handrail Use on Stair Walking Stability in Trans-Tibial 

Amputees 

Goeran Fiedler, Dipl. Ing (FH), CPO-D, Brooke A. Slavens, PhD, and Roger O. Smith, PhD, OT 

Department of Occupational Science and Technology Rehabilitation Research Design and 

Disability (R2D2) Center 

(Presented at the 1st Occupational Science Summit. 2012. St. Louis, MO.) 

 

9.2.1 Abstract 

This paper presents preliminary findings on stair walking kinetics in trans-tibial amputees, as 

part of a larger, ongoing study of lower extremity kinetics of amputee gait. 

9.2.2 Introduction 

The ability to walk on stairs is an important skill, as stairs belong to the typical obstacles that can 

be widely found in most every environment. Various disabilities are known to reduce the stair 

walking efficiency in patients, which not only limits their range of mobility, but can also become 

a safety issue due to the high injury probability of stair accidents. Accordingly, the biomechanics 

of stair ascent and descent have been investigated to great extent [1]. Previous studies that 

were conducted on different populations, including elderly people [2], patients having 

undergone ACL reconstruction [3], and amputees [4-6] used force plates that were integrated in 

one or more steps of the stairs. This setup reduced the number of steps available for evaluation 

and limited information on step-to-step variability, a variable that indicates walking stability [2]. 

Artificial limbs offer the opportunity to install sensors to directly measure forces and moments 

in the weight bearing structure of the locomotor apparatus, which allows continuous data 

collection over entire flights of stairs. 
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9.2.3 Methods 

Ten subjects were recruited for this IRB approved study. Upon installation of the mobile sensor 

(iPecs, College Park Industries, Fraser, MI) in their respective original prosthesis, participants 

were asked to walk down and up a 13-step stair with handrails conveniently located on both 

sides. Walking speed and technique were self-selected. Knee and ankle moments were 

compared within subjects over the intermediary 11 steps of their stair walk trials, separately for 

descent and ascent. Averages and standard deviations in stance duration, maximal longitudinal 

shin compression force, maximal ankle moment and maximal knee moment were compared 

between subjects who used no handrail, one handrail and both handrails. 

9.2.4 Results 

Preliminary findings indicate that use of one handrail in stair descent reduces the bodyweight 

normalized, maximal compressive force on the shin segment by almost 50% as compared to 

freehanded walking. When the same person was using different handrails, the average peak 

force was increased slightly by 5% when using the non-preferred handrail down, but reduced by 

2% upstairs. With both handrails, the force was reduced by 39% (down) and 8% (up). 

Variability between steps was considerable, with standard deviations of 10 to 20% for step 

time, maximal longitudinal force, and ankle flexion moments throughout. Stability, as expressed 

in deviation of peak force, step time, peak ankle moment, and peak knee moment was best with 

use of the preferred handrail, and worst with both handrails. However, step time decreased 

when both handrails were used. 
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Figure 37: Effect of handrail selection on selected gait parameters during up stairs walking 

9.2.5 Discussion 

Only two of the subjects elected not to use a handrail for normal speeds, and two others used 

both handrails. Of those who used one handrail, four preferred the one on the side opposite of 

the prosthesis, and two preferred the same sided handrail. Stability measures did not show big 

differences between subjects who preferred the handrail on the same side of the prosthesis and 

those who preferred the opposite side handrail. 

Given the fact, that the majority of subjects used the respective right handrail, it can be 

suspected that the preferred hand seems to be more important than the preferred leg. In 

absolute measures, preference of the opposite handrail seemed to decrease the stair climbing 

velocity, especially down stairs, and it clearly increased the measured knee and ankle flexion 
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moments during up stairs climbing. Step-by-step variability within the selected kinetics 

parameters does not seem significantly influenced by the use of handrail(s); however, this 

finding may be attributed to the fact that subjects were free to decide which handrail to use. We 

suspect that other factors, such as prosthetic socket fit or the componentry design determine 

the level of stair walking stability in amputees. 
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9.3 Evaluation of an Integrated Sensor System for Assessment of Prosthesis 

Ankle Alignment in Lower Extremity Amputees 

Goeran Fiedler, Dipl. Ing (FH), CPO-D, Brooke A. Slavens, PhD, and Roger Smith, PhD 

Rehabilitation Research Design and Disability (R2D2) Center, Department of Occupational Science 

and Technology, University of Wisconsin-Milwaukee, Milwaukee, WI 

(Presented at Gait and Clinical Movement Analysis Society (GCMAS) Conference. 2012. Grand 

Rapids, MI) 

9.3.1 Introduction 

Prosthesis integrated sensors allow the continuous measurement of forces and moments 

directly within the weight bearing structure of the locomotor system. This possibility is unique 

for amputee subjects, as comparable measurements in normal subjects would always 

necessitate the use of an external gait analysis system, or the surgical implantation of respective 

sensor units [1, 2]. Intended applications of prosthesis integrated sensors include the 

assessment of amputee gait in clinical and non-clinical environments, and efficient optimization 

and outcome assessment of prosthetic fittings without the need for conventional gait analysis 

[3]. These applications are based on the assumption that the integrated sensor delivers valid 

information. Beyond that, it remains to be determined whether three-dimensional force and 

moment data in the prosthetic leg is sufficient to accomplish those objectives. This study 

presents preliminary evaluation of the iPecs integrated sensor for quantitative assessment of 

prosthesis alignment. 

9.3.2 Clinical significance 

Optimal prosthesis fitting and alignment is a prerequisite to efficient and symmetrical amputee 

gait. In the clinic, the respective assessment is usually based on visual observation and feedback 

that the patient voices [4, 5]. A more objective and reliable method would be based on 
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conventional gait analysis that, indeed, is commonly used as a research tool. However, 

relevance is lacking to everyday clinical practice, due to the significant time, space, and effort 

that the operation of such systems require. The emergence of easy to use, quantitative tools for 

objective assessment of amputee gait has the potential for improving prosthesis fit and 

alignment. 

9.3.3 Methods 

A total of 10 trans-tibial amputees were recruited for participation in this IRB-approved study. 

Subjects who were pain free and able to walk comfortably for at least 30 minutes were included 

in the sample. Amputees whose residual limb length prevented the accommodation of the 

sensor unit in the prosthesis had to be excluded. Participants’ prostheses were modified to 

install the sensor unit (iPecs, CPI, Fraser, MI). Subjects then performed walking trials with 

different ankle alignment settings, each deviating 2 degrees 

from their normal position in the sagittal plane. Between 

walking trials, subjects were asked to stand normally, with 

feet placed on adjacent force plates (AMTI, Watertown, 

MA). Ankle and knee moments were computed from Motion 

Analysis Data (Motion Analysis, Santa Rosa, CA), as well as 

from the iPecs data. Intermethod reliability of moment 

averages and maxima was estimated for each intervention 

using a 2 x 3 ANOVA. 

 

 

Figure 35: Prosthesis with iPecs 
sensor below the socket 
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9.3.4 Demonstration 

Figure 38 shows the experimental setup with the integrated sensor mounted in the prosthesis 

and the subject wearing markers for the motion analysis. Figure 39 illustrates the differences in 

vertical force and ankle torsion moments during walking trials, as measured with both methods 

for one representative subject. 

 

 

9.3.5 Summary 

Our study investigated whether the forces and moments within trans-tibial prostheses can be 

accurately measured using integrated sensors. Changes in the alignment of the prosthetic ankle 

joint should be reliably represented in the respective changes of the joint moment(s) regardless 

of the measurement method. If differences in alignment can be successfully detected using the 

iPecs, integrated sensors may be used alternatively to conventional gait analysis. For the static 

optimization of the ankle flexion, which is of relevance for the safety and efficiency of amputee 

gait, this seems to be the case. Typical limitations of this tool, such as delivering information 

only on one leg, and without any kinematic data, are not of concern for this application, but 

should be considered in more extensive observations that include locomotion. This evaluation 

serves as the foundation for further investigation of improving prosthetic alignment and overall 

assessment through the use of integrated sensors. 

Figure 39: Superposition of force and moment data of two consecutive steps obtained by integrated sensors 
(orange) and by force plates (black dotted).  
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9.4 Integrated Sensor Systems for Assessment of Rehabilitation in Lower 

Extremity Amputees  

By Goeran Fiedler, Dipl. Ing (FH), CPO-D and Brooke A. Slavens, PhD 

(Presented at isQoLT 2011, Toronto) 

9.4.1 Abstract 

The emergence of internal sensor systems for prosthetic gait assessment brings new perspective 

in the field of amputee rehabilitation outcomes measurement. Existing methods for determining 

the quality of prosthetic fit are limited. New technology using integrated sensor systems, such as 

the “iPecs”, may provide useful quantitative metrics for clinical and rehabilitation assessment of 

lower extremity amputees.  These systems may prove essential for mobile monitoring and 

biomechanical evaluation. 

9.4.2 Background 

Amputations of the lower extremity are comparably widespread. Trans-tibial amputation alone 

has an annual incidence rate of roughly 13 in 100,000 Americans [1]. The main causes for such 

amputations are vascular conditions, such as those resulting from diabetes. With the expected 

higher prevalence rate of diabetes in the future, it is projected that the number of persons living 

with an amputation will double by the year 2050 [2]. Artificial limbs that replace the lost 

structure below the knee are necessary to enable standing and ambulation without crutches, 

and to facilitate the prevention of secondary ailments. Since socket fit and static alignment of 

prostheses are customized to the individual user, standardized quality measures are difficult to 

define and often result in high variability within the end products of prosthetist’s efforts.  

The tools that have been used to assess the quality of prosthetic fit and performance 

capabilities include questionnaires, pedometers, accelerometers, and motion analysis. While 

each of these methods has a unique scope, all have some shortcomings with respect to 
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subjectivity and reliability of long-term evaluation of outcomes. A new generation of integrated 

sensor units promises to provide precise and extensive mobile data that may be very useful in 

quantifying the relevant factors for amputees. 

9.4.3 State of the Art 

 Prosthetics and Orthotics (P&O) is traditionally a trade that depends widely on the 

practitioner’s personal professional experience. While much of the manual labor that goes into 

building and fitting a prosthesis has been replaced by standardized solutions over the last 

decades, the crucial task of optimizing socket shape and static alignment of the prosthesis 

remains a domain of the prosthetist’s expertise and keen eye.  

Accordingly, the consistent quality of prosthetic fittings can be questioned [3], especially in 

regions where skilled labor is scarce. In low income countries, for instance, as estimated by the 

World Health Organization (WHO), approximately 20,000 orthopedic technicians was needed in 

2010, whereas only 300 technicians graduate annually from training centers [4]. Efficient 

methods to consistently achieve a proper alignment of the prosthesis are required to increase 

the quantity and quality of prosthetic provisions. 

The consequent application of evidence based practice principles in the field has been 

hampered by the inevitably narrow bandwidth of research, leading to a lack of basic science. 

According to Geil et al. (2009), research in P&O relies on basic research from other disciplines if 

it relies on basic research at all. While this phenomenon is partly due to the relative youth of 

sophisticated P&O research, the applied nature of the field also lends itself to applied research [5]. 

One aspect is also the availability of dedicated tools for static alignment. Replacing some 

traditional analogous measuring devices with modern computer aided scanners and laser plumb 

lines has contributed to a reduction of the error variance [6], without however addressing the 
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basic problem of obtaining objective information on the quality of fit during the rectification and 

optimization process. Promising methods to standardize prosthetic alignment algorithms based 

on accurate data collection have been proposed [7], but have not gained widespread popularity. 

Similarly, the usefulness of motion analysis for the optimization of prosthetic gait pattern is 

evident, yet in everyday practice almost irrelevant due to the extensive equipment and time 

demands that cannot usually be accommodated (figure 1). Recently, the adaptation of 

miniaturized sensors for P&O purposes has changed this situation. Ayyappa et al. [8] states that 

current technology provides onboard gait laboratories as components of the prosthesis, which 

may allow practitioners to more intimately meet the needs of their patients.  

9.4.4 The Future of integrated Gait Analysis 

The option of integrating a sensor unit directly into the weight bearing structure is unique to the 

field of prosthetics, as any sensor that a non-amputated subject would be equipped with can 

merely be attached to the surface of the body, and is thus susceptible to various measurement 

errors. The onset of commercially available computer controlled prosthesis knee joints in the 

1990s brought about the first miniaturized sensors that were required in order to deliver the 

input for the respective swing phase control or stance phase safety. The Otto Bock C-Leg 

features a set of strain gages inside the modular shin tube adapter and uses the obtained 

moment information during the ground contact phase to determine the actual segment of the 

gait cycle. 

Based on essentially the same technology, various modular components have been 

introduced by different manufacturers. Initially, these devices were intended to be temporarily 

mounted into the prosthesis, and deliver gait data to help optimize the alignment. 

Considerations on weight and cost of these early generation sensor units did not suggest their 

permanence in the prosthesis. 
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The prospect of measuring online gait data independent of a gait laboratory is not without 

inherent difficulties. Apart from the question on validity of the data collection [9], it is most of 

all important to decide what exactly should be measured, and how this information can be 

useful for clinical purposes. The iPecs (Intelligent Prosthetic Endoskeletal Component System) by 

College Park Industries [10], for instance, is capable of measuring forces and moments in six 

degrees of freedom (figures 2, 3), most of which the practitioner may be challenged to use.  

First studies that utilized this tool [11] restrained themselves to longitudinal comparisons of 

selected output values measured in different situations of prosthesis use. Arguably, these 

findings require additional information on how the parameters in question relate to practically 

relevant factors. Values which are correlated to desirable outcomes should be identified, as else 

the data remains useless in practice.  

There exists a need for a reliable, objective assessment method to serve as the gold 

standard to compare outcomes from the iPecs or other integrated sensor systems. Conventional 

gait analysis may be suggested as the standard for comparison of data with these systems. This 

approach offers the possibility to identify significant parameters characteristic of amputee gait. 

Once these factors are known, integrated sensor systems may be used to assess prosthetic gait 

in various environments which utilizes its mobile capabilities.  

9.4.5 Discussion 

Current force and moment sensor technology and their application in prosthetics offers unique 

insight to prosthetic gait by allowing the collection of objective data over extended periods of 

time, independent of the laboratory environment. Caution is recommended when interpreting 

the raw data without a well-defined reference, in order to avoid merely having shifted the 

guessing to a more technical and costly level. 
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Provided that the available technology is capable of identifying clinical deviations in gait 

patterns, it can be projected that the hardware will be subsequently optimized to become 

lighter, less bulky, and more affordable. It is conceivable in the future that every prosthesis will 

be equipped with such a mobile gait lab, improving prosthetic fit and rehabilitation assessment 

of lower extremity amputees. 
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9.5 Leg Laterality in Bilateral Trans-Tibial Amputees,  A Case Study using 

Prosthesis-Integrated Sensors  

Goeran Fiedler1, Brooke Slavens1, Doug Briggs1, Frank Fedel2, Roger Smith1  

1University of Wisconsin Milwaukee, 2 Eastern Michigan University  

(Presented at the Annual Conference of the Rehabilitation Engineering And Assistive Technology 

Society of North America (RESNA). 2012. Baltimore, MD) 

9.5.1 Abstract 

Bilateral leg amputation is obviously a severe detriment of physical integrity. However, at least 

in the case of bilateral trans-tibial amputation, rehabilitation efforts are often promising, and 

many patients succeed in learning to use prostheses. Due to the relatively small population size, 

literature on gait biomechanics for these patients is scarce, and prosthetic fitting practice is 

based on tradition and empiric rules of thumb. One question that is frequently encountered 

during fitting is whether there is a disparity in leg strength and controllability, and if so, which 

one of the legs is the favored one. This may have implications for the selection and adjustment 

of prosthetic parts, as well as for the prescription of physical therapy, and possibly 

recommended assistive devices. Prosthesis-integrated sensors suggest themselves as efficient 

assessment tools, as they can be installed in both legs, and thus allow continuous and un-

obstructive data collection during various activities (Fiedler & Slavens, 2011). Simple pair-wise 

comparison of parameters between legs can then help answer the research question.  

9.5.2 Introduction  

Among the many millions of people world-wide who live with limb loss, the fraction of bilateral 

trans-tibial amputees is considerable, and includes an estimated 11,400 individuals in the US 

alone (Su, Gard, Lipschutz, & Kuiken, 2007). Many of the main causes of amputation, such as 

cardiovascular disease, trauma, and congenital defects are usually not limited to a single limb or 

side. The rehabilitation of these patients can be challenging due to having to replace several 
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limbs by prostheses. However, in many cases an efficient verticalization can be achieved, 

enabling the amputee to walk with little or even entirely without crutch support. The success 

rate in using prostheses for bilateral trans-tibial amputees has been reported to be as high as 

60-90% (De Fretes, Boonstra, & Vos, 1994). Their gait has been found to be characterized by 

lower speeds, cadences, ankle moments and knee moments, compared to able bodied controls, 

which might be attributed to a deficit in available prosthetic componentry (Su, Gard, Lipschutz, 

& Kuiken, 2007).  

One issue in the prosthetic fitting process is the decision about socket technology and 

functional part selection in cases where the residual limbs display different capabilities in terms 

of weight bearing, and prosthesis control. This is usually assumed when there is a large gap in 

limb length, and/or additional impairments such as large scars, muscular deficits or joint 

ailments affecting one side more than the other. Consequently, optimal selection and 

adjustment of the prosthetic foot components may be different for both legs. Prosthetic feet 

characteristics can generally be described as a continuum between stiffness and flexibility. 

While the former allows energy storage and return in the interest of a dynamic and efficient gait 

pattern, the latter secures stable ground contact, accommodation of uneven surfaces, and 

reduction of ankle moments, which is conducive to the stance stability and thus the (perceived) 

safety of the amputee (Su, Gard, Lipschutz, & Kuiken, 2010).  

Knowledge on the preferred leg of bilateral trans-tibial amputees can inform the 

prescription of prosthetic feet and other functional parts such as torsion adapters or shock 

absorbers. Beyond that, it becomes possible to customize a physical therapy regimen that 

considers the respective different capabilities of both legs, so as to include strengthening and 

balance, and to practice individualized strategies for stair walking and other demanding tasks of 

everyday life.  



www.manaraa.com

219 
 

 

9.5.3 Methods  

IRB approval for this study was granted. Persons from 18 to 80 years of age with bilateral trans-

tibial amputations who use prostheses built in modular technique, and were able to walk at 

least 30 minutes per day pain-free and without assistive devices were recruited for this study. 

Patients whose prostheses did not provide enough space between socket and foot module to fit 

the mobile measuring unit could not participate in this study. An initial screening was conducted 

to assure eligibility. Two male subjects (A: 61 years, 5’7”, 185 lbs, and B: 32 years, 5’8”, 178 lbs) 

participated in this study. Informed consent was obtained prior to the data collection.  

In preparation of the data collection, the existing prostheses of the subject were modified 

by replacing the tube adapters above the foot modules with the iPecs integral sensor units 

(College Park Industries, Fraser, MI), and tube adapter in respectively shorter or longer lengths 

while maintaining the overall static alignment of the prostheses. In the gait lab, the subjects 

donned the modified prostheses in the usual fashion. In addition to measuring anthropometric 

data, such as limb dimensions, subject height and body mass, the Amputee Activity Score sheet 

was completed based on the subject’s self-report (Day, 1981).  

Continuous iPecs measurements were conducted while subjects performed the following 

tasks in subsequent order:  

- Walked in their preferred speed along the hallway (level surface, concrete floor),  

- Walked down the stairs to the 1st floor (15 steps, concrete),  

- Walked across a parking lot outside of the building (slightly uneven, asphalt and concrete 

sidewalk),  

- Walked up a different set of stairs (13 steps), and  

- While secured with a safety harness, walked through a 10 ft long sand box filled with gravel.  
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Gait analysis parameters such as step stance duration, knee-, and ankle moment, axial shin 

compression force, all delivered by the iPecs device were normalized to body weight and 

averaged over the trials of each task group (baseline gait inside the lab, stair gait, gait outdoors). 

A bilateral comparison was conducted by means of MANOVA, using the statistical package IBM 

SPSS 20. For every task, the mean difference of the parameters was calculated based on the 

available sample of steps.  

9.5.4 Results  

Both participants were comparably active prosthesis users with several years of experience. 

Subject A has been a bilateral amputee for 17 years and scored 15 on the Amputee Activity 

Score. Both of his residual limbs had about the same dimensions with a length of 16.5 cm. 

Subject B lost his legs 4 years prior, and had an Amputee Activity Score of 21. His residual limbs 

measured 16.5 cm (right) and 15 cm (left) in length. Both participants were fitted with patellar 

tendon bearing sockets with silicon liners and energy storing carbon feet.  

 
Figure 40: Average values in peak vertical force (Fz), stance phase duration, Ankle flexion moment, Knee flexion 
moment, and stride duration for 17 steps of walking on level ground for Subject A. All values are normalized to lbs 
body weight.  
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Participant A preferred a slower walking speed, and used a cane with his right hand. His 

time on the 210 m long circuit path (including the stairs) was 5:55 minutes, equaling an average 

velocity of about 0.59 m/s. Participant B walked without assistive devices and averaged a lap 

time of 3:53 minutes (0.90 m/s). Both participants climbed up stairs employing an alternating 

pattern and using handrails. For the task of walking down stairs, Subject A preferred to step 

forward always with his right foot before placing the left foot on the respective same stair step, 

whereas Subject B displayed an alternating foot placement.  

As a result, 13 steps of down stair walking have been recorded for both legs of Subject A 

(not counting the respective first and last steps), and seven, respectively six steps for the two 

legs of Subject B. Walking up the stairs, both subjects had five or six valid steps of each leg. Level 

ground walking involved 17 steps (A) and 15 steps (B), while outdoor walking was evaluated 

over 27 steps (A) and 31 steps (B) respectively. No useable data could be collected for Subject A 

walking on the gravel path, and only 4 steps were evaluated for Subject B performing this task.  

Figure 40 illustrates the bilateral differences between legs during level ground walking in 

Subject A. All comparisons are summarized in tables 26 and 27.  

Table 26: Bilateral comparison of step parameters during different walking activities. Listed are the 
absolute values for Subject A. * marks significant bilateral differences at the .05 level. 
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Table 27: Bilateral comparison of step parameters during different walking activities. Listed are the absolute values 
for Subject B. * marks significant bilateral differences at the .05 level. 

 

9.5.5 Discussion  

The bilateral differences of walking parameters can be interpreted as an indicator of gait 

symmetry. According to the data we collected, bilateral amputee walking seems to be 

characterized by a considerable asymmetry in gait parameters. The parameters that display 

those asymmetries appear to be individually different. Subject A had very symmetrical weight 

distribution (judged by the peak vertical forces) during level walking, but significant bilateral 

differences in stance phase duration, knee moment and ankle moment. When walking on less 

smooth ground outdoors, the vertical forces became less balanced, but differences in knee 

moment and stance phase duration diminished. The only consistent pattern over all four 

walking tasks was that the ankle moment in the right foot was greater than in the left foot. The 

bilateral differences in Subject B were overall more consistent. Most notably was the knee 

moment that in all situations was higher in the right leg than in the left. The subject reported 

that he often depends more on his left leg, which seems to be confirmed by the peak forces that 

are mostly higher for this side. The fact that greater moments were measured in the right knee 

might be related to this residual limb being longer than the left one.  
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Our chosen data evaluation method based on discrete variables has been used in previous 

studies (Chow, Holmes, Lee, & Sin, 2006), but has its limitations in that it cannot entirely 

describe the kinetics parameters of the step cycle. Judged by the data plots, the measured 

differences may appear even greater when assessed more elaborately. In this context, however, 

it could be discussed what level of difference is indeed of clinical significance. Does the 

discrepancy of 10 Nm in ankle moment warrant a change of the used prosthetic foot 

component, or is such a small aberration an individual peculiarity that does not call for an 

intervention? A more extensive study, both in sample size, and assessment period, may be 

required to answer this question.  
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10 Appendix F: Informed Consent form 

UNIVERSITY OF WISCONSIN – MILWAUKEE 

CONSENT TO PARTICIPATE IN RESEARCH 

THIS CONSENT FORM HAS BEEN APPROVED BY THE IRB FOR A ONE YEAR PERIOD 

 

1. General Information 

Study title: Biomechanical Assessment of Gait in Lower-Extremity-Amputees 

Person in Charge of Study (Principal Investigator):  

• The principal investigator for this study is Brooke Slavens, PhD. 

• Dr. Slavens is an assistant professor at the College of Health Sciences at UWMilwaukee 

• Goeran Fiedler is the student-PI for this study. He is a PhD student at the College of 

Health Sciences. 

 

2. Study Description 

You are being asked to participate in a research study.  Your participation is completely 

voluntary.  You do not have to participate if you do not want to. 

 

Study description: 

The purpose of this study is to investigate the symmetry of gait; that is how the motion patterns 

of your left and right leg differ when walking with prosthesis. 

• This study is being done to find out how the gait pattern is linked to the setting of the 

prosthesis. This information can help improve the quality of prosthetic fittings. 

• Specific goals of the study are to investigate how gait symmetry changes on different 

surfaces, with different prosthetic alignments, and at different levels of muscle fatigue. Also, we 

will temporarily install a small sensor unit in your prosthesis, and see whether this can be used 

to measure your gait symmetry. 

• The study is being done at the UWM University Research and Services Building, 115 East 

Reindl Way, Milwaukee, WI 53212. 

• Up to 20 subjects will participate in this study. 

• All data collection will take a maximum of five hours per subject, and will be done on the 

same day. In order to assure that your prosthesis can be modified as planned, a short (10 

minute) technical check-up will be conducted prior to the appointment. 

 

3. Study Procedures 

What will I be asked to do if I participate in the study? 

If you agree to participate you will be asked to  



www.manaraa.com

225 
 

 

• Come to the UWM University Research and Services Building, 115 East Reindl Way, 

Milwaukee, WI 53212. 

• Doff your prosthesis, so that we can install a small sensor unit. Depending on technical 

circumstances this may take up to one hour to do. 

• In the meantime, complete a short standardized interview on your activity level (the 

Amputee Activity Score). 

• Don the prosthesis again and have reflective markers placed on your skin and garment. 

Those are required for the motion capturing. Also we will place sensors that measure your 

muscle activity on the skin of your thighs. It is possible that we will need to shave off some hair 

where the sensors are to be placed. We will take measurements of your foot size, height and 

body weight. You will put on a safety harness that will be required towards the end of the 

testing. Overall, those preparations will be concluded within 30 minutes. 

• Following this, perform a number of walking trials in the gait lab. This is used to 

synchronize the readings from the sensor unit with the data from the motion analysis system 

and will take 5 minutes at most. 

• Next, walk along the hallway outside the lab and down a flight of stairs, and return the 

same way, walk through a box of gravel while being secured by the safety harness. This delivers 

measurement data that we can compare with the data from the gait lab. Depending on your 

preferred walking speed, this will require between 5 and 10 minutes. 

• Take a break while we make slight adjustments to the static alignment of your 

prosthesis. Those include a total of 6 different interventions, such as lowering the forefoot, or 

increasing the outward rotation. With each of the 6 different settings you will be asked to walk a 

few minutes. Again, this gives us data that we can use for comparison purposes, and will take 

about one half hour overall. 

• Eventually, walk on a looped path along the hallway, down the stairs, out the backdoor, 

across the parking lot, through the front door, up the stairs and back to the laboratory. You will 

be accompanied at all times by members of the research team. This exercise will cause a certain 

degree of overall exertion, which we will assess according to your feedback. Depending on your 

fitness level, this walking exercise will take anywhere from 10 minutes to 60 minutes.  

• With your harness connected to a safety rope, perform another set of walking trials in 

the lab. The data will allow us to determine the effect of fatigue on your walking pattern. This 

last test will take no longer than 5 minutes.  

• Doff your prosthesis and have the sensor removed and the original state restored. 

Depending on technical conditions, this will require up to 30 minutes. 

You can take a break at any point in time. Much of the estimated time between the test 

procedures, will be needed for technical preparations, and can be used to rest. In fact, the 

actual performance time will sum up to less than 2 hours total. Your gait will be recorded by a 

multi-camera motion capture system. However, those cameras only record the reflective 

markers, so that your face will not be recognizable. We may ask for permission to take some 

photos for documentation purposes. If published, it will be masked in a way to make you 
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unidentifiable. If you do not want to have your picture taken, you can still participate in the 

study.  

 

4. Risks and Minimizing Risks 

What risks will I face by participating in this study? 

• Foreseeable risks and discomforts include skin irritation from the markers and EMG 

sensors. Those are attached by means of adhesive tape, which is somewhat likely to cause pain 

at removal. In the case that we need to shave off some hair, this might cause some 

inconvenience too. Risks, such as pressure pain and falls, are related to walking with prosthesis, 

especially on stairs and uneven ground, but their likelihood won’t increase by the temporary 

modifications. The fatiguing workout on the exercise machine can cause muscle weakness and 

overall exhaustion. We will use a visual analogue scale to monitor your pain level. If you 

experience uncommon pain or discomfort, the data collection can be interrupted or 

discontinued at any point in time. 

• During the tests with a modified prosthesis, two members of the research staff will 

accompany you at all times for assistance. To reduce the falling risk on the gravel path and after 

the fatigue protocol you will be using the safety harness for the remaining trials. In the case that 

you are injured because of this study, the cost of medical care for your injuries will be billed to 

you or to your insurance company. Insurance companies may not pay for medical care to treat 

injuries you receive while participating in this study. If you think that you have suffered a 

research-related injury, let the study PI know right away. By signing this form, you do not give up 

your right to seek compensation for injuries you receive while participating in this study. 

 

5. Benefits 

Will I receive any benefit from my participation in this study? 

•  There are no benefits to you other than to further research. 

 

6. Study Costs and Compensation 

Will I be charged anything for participating in this study? 

• You will be responsible for your transportation to and from the USR facilities. Parking at 

the USR facilities is free. We will not charge you anything for taking part in this research study. 

Are subjects paid or given anything for being in the study? 
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Who do I contact for questions about this study? 
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from the study, contact: 
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Department of Occupational Science & Technology 
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PO Box 413 
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Phone: (414) 229-6803 / Fax: (414) 229-6843 

 

Who do I contact for questions about my rights or complaints towards my treatment as a 
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The Institutional Review Board may ask your name, but all complaints are kept in confidence. 

Institutional Review Board 

Human Research Protection Program 

Department of University Safety and Assurances 

University of Wisconsin – Milwaukee 

P.O. Box 413 

Milwaukee, WI 53201 

(414) 229-3173 
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take part in this study, you may withdraw at any time.  You are not giving up any of your legal 

rights by signing this form.  Your signature below indicates that you have read or had read to 
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answered, and that you are 18 years of age or older. 

 

_________________________________________________  

Printed Name of Subject/ Legally Authorized Representative  

 

_________________________________________________    

Signature of Subject/Legally Authorized Representative Date 
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It is okay to photograph me while I am in this study and use my photographed data in the 

research. 

 

Please initial:  ____Yes    ____No 

Principal Investigator (or Designee) 

I have given this research subject information on the study that is accurate and sufficient for the 

subject to fully understand the nature, risks and benefits of the study. 
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Printed Name of Person Obtaining Consent Study Role 

 

____________________________________________________    

Signature of Person Obtaining Consent Date 
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